
Discrete Resonator Model

Maxwell approach:

DRM from eigenmode expansion

example: Tesla cavity → cavity signals

empiric approach:

network models for (quasi) periodic cavities

field flatness and cavity spectrum

field flatness and loss-parameter

transient detuning

summary/conclusions



DRM from eigenmode expansion
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port modes in matrix formalism
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beam g

port a = all forward waves

b = all backward waves

modes α = all E mode-amplitudes

β = all B mode-amplitudes

all coefficients can be calculated from EM eigenmode results

(but MWS does not support it)

the lossy eigenmode problem: ,  = =a 0 g 0

but it does not work too well if one considers not enough modes

example: TESLA cavity with modes below 2 GHz



example: TESLA cavity

Xport   =-193

∆xpen= 8

f/GHz          Q/1E6

0                     0

0.721865      0.000001

1.2763        88.2703

1.27838      22.6809

1.28157      10.5396

1.28551        6.32979

1.28973        4.41263

1.29373        3.41628

1.29701        2.87407

1.29917        2.57969

1.29991        4.97314

f/GHz          Q/1E6

0                     0

0.833513      0.000001

1.2763        44.2134

1.27838      11.3918

1.28157        5.31692

1.28551        3.21128

1.28973        2.25295

1.29373        1.7553

1.29701        1.48468

1.29917        1.33733

1.29991        2.57894

direct calculation (modes below 2GHz):

* compare:

Dohlus, Schuhmann, Weiland: Calculation of Frequency Domain Parameters Using 3D 

Eigensolutions. Special Issue of International Journal of Numerical Modelling: 

Electronic Networks, Devices and Fields 12 (1999) 41–68

improved calculation*:
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phase of reflection coefficient:



the improved method
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known part unknown part

this part is smooth in the frequency range of the known part;

with some additional information one can find a good approximation



f(PMC)/GHz

0

0.8612027

1.276303833

1.278377530

1.281569543

1.285508949

1.289734390

1.293732580

1.297014913

1.299167855

1.299908996

f(PEC)/GHz

0.429000747

1.276303633

1.278376664

1.281567291

1.285503885

1.289722730

1.293696870

1.296413920

1.297209500

1.299220100

1.299932200

example: TESLA cavity

( ) ( ) 0k PEC u PECZ j Zω ω+ =ɶ ɶ( )k PMCZ jω = ∞ɶ

one-port system: Zu can be calculated 

for PEC resonance frequencies



phase of reflection coefficient (again):
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excitation of the modes* 1 to 11 by an ultra-relativistic  point particle (q=1C)

( ), 0

V/m

zE z r =

these are the first 11 modes without divergence (div E) in vacuum

modes 3-11 are related to the first band of monopole modes

z
q



port stimulation
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t/T
g
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t/T
g
==n+1/4 this is time domain, ~ 5E6 periods

stimulation ωg on resonance of “pi-mode”

blue curves are sampled at t = nTg

they can be interpreted as real part

red curves are sampled at t = nTg + Tg/4

they can be interpreted as real part

fill  mode ln 2πτ τ=

a,b



deviation from flat top



spectrum of “pickup” signal and stimulation

a,b

“pickup” signal



spectrum of “pickup” signal and LP filter

a,b

“pickup” signal after LP filter



a,b

spectrum of “pickup” signal and BP filter“pickup” signal after BP filter



empiric approach:

network models for (quasi) periodic cavities

geometry

1 resonance, 2x1 ports, electric coupling

2 resonances, 2x2 ports, magnetic coupling

K. Bane, R. Gluckstern: The Transverse Wakefield of a Detunded 

X-Band Accelerator Structure, SLAC-PUB-5783, March 1992

1 resonance, 2x1 ports, magnetic coupling



approach from network theory

a,b

c1 c2 c3 c4 c5 c6 c7 c8 c9b1 b2… … …… … … …… ……

b1, b2: boundary blocks with n respectively n+1 ports

c1, c2, … c9: cell blocks with 2n ports

simplifications: c2, … c8 (or c1, ... c9) are identical and symmetric

use periodic solutions of 3d system to characterize cell blocks

special treatment of boundary blocks



a,b

system with beam

z
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beam ports with delay are connected in series
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c… …

the general symmetric 2n-port network
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RSD is a measure for the change of  the mode spectrum of one cavity compared 

to itself 

relative spectral deviation



field flatness and mode spectrum

Is there a direct relation between the field flatness of the accelerating 

mode and  the resonance frequencies of modes in the same band?

test it for a simpler problem:

even simpler:
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field flatness and loss parameter

again the discrete network:

loss-parameter:
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for σx = 0.1 the loss parameter is reduced by only 1%!



simulation for network with tolerances



correlation between field flatness and relative spectral deviation 
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time dependent detuning
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This would mean all the modes are independently ringing, there is no mode 

conversion.
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next slide:

numerical calculation for 

the effect of mode conversion is weak if the time scale of ϕ(t) is long compared 

to the resonances
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summary/conclusion

• eigenmode expansion is effective to analyse cavity signals 

in the frequency range of the first monopole band →
signals seen by couplers and pickups

• pickups are more sensitive to non-accelerating monopole 

modes than the beam

• eigenmode expansion is standard for long range effects

empiric approach: discrete network

Maxwell approach: field eigenmode expansion

• discrete network models allow qualitative insight

• it is easy to analyze discrete models and to consider random effects

• it is difficult to relate network parameters to geometric properties 

and imperfections; it is in principle possible

• loss-parameter is very insensitive to field flatness; but the peak field 

is sensitive!

• no sharp correlation between relative spectral deviation and flatness

• it is possible to calculate time dependent resonance, but modeling 

requires (some) caution




