Discrete Resonator Model

Maxwell approach:

DRM from eigenmode expansion example: Tesla cavity \rightarrow cavity signals

empiric approach:

network models for (quasi) periodic cavities field flatness and cavity spectrum field flatness and loss-parameter transient detuning

summary/conclusions

DRM from eigenmode expansion

$$\nabla \times \nabla \times \mathbf{E} + \mu \varepsilon \frac{\partial^2}{\partial t^2} \mathbf{E} = -\frac{\partial}{\partial t} \mu \mathbf{J}$$

$$\nabla \times \nabla \times \mathbf{E}_{\nu} = \mu \varepsilon \omega_{\nu}^2 \mathbf{E}_{\nu}$$

$$\mathbf{E}(\mathbf{r}, t) = \sum \alpha_{\nu}(t) \mathbf{E}_{\nu}(\mathbf{r})$$

$$\mu \varepsilon \sum \left(\omega_{\nu}^2 + \frac{\partial^2}{\partial t^2} \right) \alpha_{\nu}(t) \mathbf{E}_{\nu}(\mathbf{r}) = -\frac{\partial}{\partial t} \mu \mathbf{J}$$

$$\frac{1}{2} \int \varepsilon \mathbf{E}_{\nu} \mathbf{E}_{\mu} dV = W_{\nu} \delta_{\nu\mu}$$

$$\overrightarrow{\mathbf{J}} = q \dot{\mathbf{r}}_{p}(t) \delta \left(\mathbf{r} - \mathbf{r}_{p}(t) \right) \rightarrow g_{\nu}(t) = \frac{1}{2} q \dot{\mathbf{r}}_{p}(t) \cdot \mathbf{E}_{\nu} \left(\mathbf{r}_{p}(t) \right)$$

EoM + eigenmode approach

port modes in matrix formalism

$$\frac{d}{dt} \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{D}_{\omega} \\ -\mathbf{D}_{\omega} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{pmatrix} - \begin{pmatrix} \mathbf{g} + \mathbf{V} \begin{pmatrix} \mathbf{a} - \mathbf{b} \end{pmatrix} \\ \mathbf{0} \end{pmatrix}$$
$$\mathbf{a} + \mathbf{b} = -2\mathbf{V}^{t} \mathbf{D}_{Wm} \boldsymbol{\alpha}$$

 $\begin{array}{ll} \mbox{beam} & \mbox{g} \\ \mbox{port} & \mbox{a} = \mbox{all forward waves} \\ \mbox{b} = \mbox{all backward waves} \\ \mbox{modes} & \mbox{\alpha} = \mbox{all E mode-amplitudes} \\ \mbox{\beta} = \mbox{all B mode-amplitudes} \end{array}$

all coefficients can be calculated from EM eigenmode results (but MWS does not support it)

the lossy eigenmode problem: $\mathbf{a} = \mathbf{0}, \ \mathbf{g} = \mathbf{0}$

$$\downarrow \frac{d}{dt} \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{pmatrix} = \begin{pmatrix} -2\mathbf{V}\mathbf{V}^{T}\mathbf{D}_{Wm} & \mathbf{D}_{\omega} \\ -\mathbf{D}_{\omega} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{pmatrix}$$

but it does not work too well if one considers not enough modes example: TESLA cavity with modes below 2 GHz

example: TESLA cavity

direct calculation (modes below 2GHz):

f/GHz	Q/1E6
0	0
0.721865	0.000001
1.2763	88.2703
1.27838	22.6809
1.28157	10.5396
1.28551	6.32979
1.28973	4.41263
1.29373	3.41628
1.29701	2.87407
1.29917	2.57969
1.29991	4.97314

improved calculation*:

f/GHz	Q/1E6	
0	0	
0.833513	0.000001	
1.2763	44.2134	
1.27838	11.3918	
1.28157	5.31692	
1.28551	3.21128	
1.28973	2.25295	
1.29373	1.7553	
1.29701	1.48468	
1.29917	1.33733	
1.29991	2.57894	

* compare:

Dohlus, Schuhmann, Weiland: Calculation of Frequency Domain Parameters Using 3D Eigensolutions. Special Issue of International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 12 (1999) 41–68

the improved method

frequency domain (quantities with tilde)

$$j\omega \begin{pmatrix} \tilde{\boldsymbol{\alpha}} \\ \tilde{\boldsymbol{\beta}} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{D}_{\omega} \\ -\mathbf{D}_{\omega} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \tilde{\boldsymbol{\alpha}} \\ \tilde{\boldsymbol{\beta}} \end{pmatrix} - \begin{pmatrix} \mathbf{V} \begin{pmatrix} \tilde{\mathbf{a}} - \tilde{\mathbf{b}} \end{pmatrix} \\ \mathbf{0} \end{pmatrix}$$
$$\tilde{\mathbf{a}} + \tilde{\mathbf{b}} = -2\mathbf{V}^{t}\mathbf{D}_{Wm}\tilde{\boldsymbol{\alpha}}$$

$$\downarrow \\ \tilde{\mathbf{a}} + \tilde{\mathbf{b}} = \tilde{\mathbf{Z}}(\omega) \left(\tilde{\mathbf{a}} - \tilde{\mathbf{b}} \right)$$

$$\tilde{\mathbf{Z}}(\boldsymbol{\omega}) = \sum \frac{2j\boldsymbol{\omega}}{\boldsymbol{\omega}_{v}^{2} - \boldsymbol{\omega}^{2}} W_{v} \mathbf{v}_{v}^{t} \mathbf{v}_{v}$$

this part is smooth in the frequency range of the known part; with some additional information one can find a good approximation

example: TESLA cavity

f(PMC)/GHz	f(PEC)/GHz	
0	0.429000747	
0.8612027	1.276303633	
1.276303833	1.278376664	
1.278377530	1.281567291	
1.281569543	1.285503885	
1.285508949	1.289722730	
1.289734390	1.293696870	
1.293732580	1.296413920	
1.297014913	1.297209500	
1.299167855	1.299220100	
1.299908996	1.299932200	
·	LJ	
$\tilde{Z}_{k}(j\omega_{PMC}) = \infty$	$\tilde{Z}_{k}(j\omega_{PEC}) + \tilde{Z}_{u}(\omega_{PEC}) = 0$	
one-port system: Z_{μ} can be calculated		

these are the first 11 modes without divergence (div E) in vacuum modes 3-11 are related to the first band of monopole modes

remark: higher modes static modes causality

port stimulation

this is time domain, ~ 5E6 periods stimulation $\omega_{\rm g}$ on resonance of "pi-mode"

blue curves are sampled at $t = nT_g$ they can be interpreted as real part

red curves are sampled at $t = nT_g + T_g/4$ they can be interpreted as real part

deviation from flat top

empiric approach:

network models for (quasi) periodic cavities

geometry

1 resonance, 2x1 ports, electric coupling

1 resonance, 2x1 ports, magnetic coupling

2 resonances, 2x2 ports, magnetic coupling

K. Bane, R. Gluckstern: The Transverse Wakefield of a Detunded X-Band Accelerator Structure, SLAC-PUB-5783, March 1992

approach from network theory

b1, b2: boundary blocks with n respectively n+1 ports c1, c2, ... c9: cell blocks with 2n ports

simplifications: c2, ... c8 (or c1, ... c9) are identical and symmetric use periodic solutions of 3d system to characterize cell blocks special treatment of boundary blocks

system with beam

beam ports with delay are connected in series

the general symmetric 2n-port network

with
$$\tilde{\mathbf{Z}}(j\omega) = \sum_{\nu=1}^{M} \frac{j\omega}{\omega_{\nu}^{2} - \omega^{2}} \mathbf{A}_{\nu} + j\omega \mathbf{A}_{\infty}$$

and
$$\mathbf{A}_{\nu} = \begin{pmatrix} \mathbf{r}_{\nu} \\ \mathbf{s}_{\nu} \end{pmatrix} \begin{pmatrix} \mathbf{r}_{\nu}^{t} & \mathbf{s}_{\nu}^{t} \end{pmatrix} + \begin{pmatrix} \mathbf{s}_{\nu} \\ \mathbf{r}_{\nu} \end{pmatrix} \begin{pmatrix} \mathbf{s}_{\nu}^{t} & \mathbf{r}_{\nu}^{t} \end{pmatrix}$$

 $\mathbf{A}_{\infty} = \cdots$

relative spectral deviation

RSD is a measure for the change of the mode spectrum of one cavity compared to itself

field flatness and mode spectrum

Is there a direct relation between the field flatness of the accelerating mode and the resonance frequencies of modes in the same band?

test it for a simpler problem:

even simpler:

no: both setups have the same eigen-frequencies, but different flatness/eigenvectors

field flatness and loss parameter

again the discrete network:

pi-mode

loss-parameter:
$$k = \frac{|V|^2}{4W_{tot}} \approx \frac{1}{2\omega_0^2} \frac{\left|\sum(-1)^{\nu} C_{\nu}^{-1} \tilde{i}_{\nu}\right|^2}{\sum L_{\nu} \tilde{i}_{\nu}^2} \approx \frac{1}{2C} \frac{\omega_{\pi}^2}{\omega_0^2} \frac{\left|\sum(-1)^{\nu} \tilde{i}_{\nu}\right|^2}{\sum \tilde{i}_{\nu}^2} \qquad \nu = 1 \cdots 9$$

 $\tilde{i}_{\nu} \sim (-1)^{\nu} (1 + x_{\nu})$

deviation from flat field

$$k \sim \frac{\left|\sum (1+x_{\nu})\right|^{2}}{9\sum (1+x_{\nu})^{2}} \approx \frac{1}{1+\left\langle x_{\nu}^{2}\right\rangle} \quad \text{if} \quad \left\langle x_{\nu}\right\rangle \approx 0$$

for $\sigma_x = 0.1$ the loss parameter is reduced by only 1%!

simulation for network with tolerances

correlation between field flatness and relative spectral deviation

time dependent detuning

$$\frac{d}{dt} \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} & \mathbf{D}_{\omega} \\ -\mathbf{D}_{\omega} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{pmatrix} - \begin{pmatrix} \mathbf{V}(\mathbf{a} \cdot \mathbf{b}) \\ \boldsymbol{0} \end{pmatrix}$$

$$\mathbf{a} + \mathbf{b} = -2\mathbf{V}^{t}\boldsymbol{\alpha}$$

$$\frac{d}{dt} \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} & \mathbf{D}_{\omega}(t) \\ -\mathbf{D}_{\omega}(t) & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{pmatrix} - \begin{pmatrix} \mathbf{V}(t)(\mathbf{a} \cdot \mathbf{b}) \\ \boldsymbol{0} \end{pmatrix}$$

$$\mathbf{a} + \mathbf{b} = -2\mathbf{V}^{t}(t)\boldsymbol{\alpha}$$
for instance no excitation ($\mathbf{a} = \mathbf{b}$) $\stackrel{?}{\rightarrow} \qquad \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} & \int_{0}^{t} \mathbf{D}_{\omega}(\tau) d\tau \\ -\int_{0}^{t} \mathbf{D}_{\omega}(\tau) d\tau & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\alpha}_{0} \\ \boldsymbol{\beta}_{0} \end{pmatrix}$

This would mean all the modes are independently ringing, there is no mode conversion.

example:

$$\frac{d}{dt}\mathbf{z} = \begin{pmatrix} \mathbf{0} & \mathbf{R}(t) \\ \mathbf{R}(t) & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{0} & \mathbf{D}_{\omega} \\ -\mathbf{D}_{\omega} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{0} & \mathbf{R}(t) \\ \mathbf{R}(t) & \mathbf{0} \end{pmatrix}^{t} + \mathbf{q} \quad \text{with} \quad \mathbf{D}_{\omega} = \begin{pmatrix} \omega_{1} & 0 \\ 0 & \omega_{2} \end{pmatrix}$$
$$\mathbf{R}(t) = \begin{pmatrix} \cos\varphi(t) & \sin\varphi(t) \\ -\sin\varphi(t) & \cos\varphi(t) \end{pmatrix}$$

system matrix is anti symmetric \rightarrow energy conservation with $W \sim \mathbf{z}^t \mathbf{z}$

eigenvalues are time invariant $\lambda = \{\pm j\omega_1, \pm j\omega_2\}$

but eigenvectors are time dependent

next slide:

numerical calculation for $\omega_1 = 1.98\pi$, $\omega_2 = 2.02\pi$

the effect of mode conversion is weak if the time scale of $\varphi(t)$ is long compared to the resonances

summary/conclusion

Maxwell approach: field eigenmode expansion

- eigenmode expansion is effective to analyse cavity signals in the frequency range of the first monopole band → signals seen by couplers and pickups
- pickups are more sensitive to non-accelerating monopole modes than the beam
- eigenmode expansion is standard for long range effects

empiric approach: discrete network

- discrete network models allow qualitative insight
- it is easy to analyze discrete models and to consider random effects
- it is difficult to relate network parameters to geometric properties and imperfections; it is in principle possible
- loss-parameter is very insensitive to field flatness; but the peak field is sensitive!
- no sharp correlation between relative spectral deviation and flatness
- it is possible to calculate time dependent resonance, but modeling requires (some) caution

