PETRA D Overview Collective Energy

Ilya Agapov, Reinhard Brinkmann, <u>Yong-Chul Chae</u>, Hung-Chun Chao, Heiko Ehrlichmann, Joachim Keil, Wim Leemans (M-div Director), Xavier Nuel Gavalda, Rainer Wanzenberg (Project Leader), JieXi Zhang

DESY-TEMF Collaboration Meeting DESY, Hamburg November 28, 2019

Scope of Project (Excerpt from CDR)

The project includes

- Upgrade of the storage ring PETRA III into a storage ring with ultra-low emittance,
- Upgrade and refurbishment of the pre-accelerators,
- Relocation, refurbishment/upgrade and in part new construction of photon beamlines,
- Construction of a new experimental building in the west of the PETRA ring.

PETRA III and IV

PETRA IV – MBA Based Storage Ring

PETRA IV – Diffraction Limited Source

$$\mathcal{B} = \frac{F}{4\pi^2 \Sigma_x \Sigma_{x'} \Sigma_y \Sigma_{y'}}$$

F - spectral flux

$$\Sigma_{x,y}^2 = \sigma_{x,y}^2 + \sigma_R^2$$

$$\Sigma^2_{x',y'}=\sigma^2_{x',y'}+\sigma^2_{R'}$$

a) single electron

c) PETRA IV electron bunch

 $\varepsilon_R = 10 \text{ pm}$ $\lambda = 0.125 \text{ nm}$

 $\varepsilon_x = 1200 \text{ pm}$

 $\varepsilon_x = 10 \sim 30 \text{ pm}$

PETRA IV – High Brilliance Light Source

Science Case

PETRA IV contributes to the analytic techniques that are available at DESY and the Science City Bahrenfeld

PETRA IV Conceptual Design

Storage Ring:

Baseline: H7BA style lattice (64 cells)
(ESRF-EBS style lattice)
on axis injection,
Option (considered during TDR)
maintain several beamlines
(23 m long cell with strong magnets)

Injector:

new booster synchrotron, DESY IV low emittance ~ 20 nm rad refurbished Linac II with full intensity gun Option

consider the possibility to include in the future an injector based on laser plasma wakefield acceleration

Technical sub-sytems:

Magnets, bore radius 13 mm Option: 9 ... 10 mm Vacuum system, 10 mm inner radius Option: 7 mm

PETRA IV Storage Ring

PETRA IV – baseline lattice design

- Hybrid 7BA cell
- 64 cells in 8 arcs
- 26 x 5-m long IDs

- No reverse bend
- Injection with moderate beta (~21m)
- 4 x 10-m long "super-IDs" with 4m beta

Baseline lattice parameter summary

_	Parameter	Value (IDs open)	Value (all IDs closed) ¹
	Energy E	6 GeV	6 GeV
	Circumference C	2304 m	2304 m
\bigstar	Natural emittance ϵ_0	17.4 pm rad	7.6 pm rad
	Tunes Q_x, Q_y	164.18, 68.27	164.18, 68.27
\bigstar	Momentum compaction factor α_p	$1.485 imes10^{-5}$	$1.485 imes10^{-5}$
	Natural chromaticities ξ_{x0}, ξ_{y0}	-229.9, -185.1	-229.9, -185.1
	Chromaticities ξ_x , ξ_y	+5, +5	+5, +5
	Damping partition number J_x	1.536	1.175
	Damping times $ au_x$, $ au_y$, $ au_s$	45.6 ms, 70.0 ms, 47.8 ms	19.5 ms, 22.9 ms, 12.6 ms
	Energy spread σ_p	$0.678 imes10^{-3}$	$0.903 imes10^{-3}$
\bigstar	Bunch length σ_s	1.24 mm	1.52 mm
	Bunch length σ_t	4.14 ps	5.07 ps
	Energy loss per turn U_0	1.317 MeV	4.024 MeV
	RF voltage $V_{ m RF}$	6 MV	8 MV
\bigstar	Bucket half height $\Delta p/p$	8.7 %	7.1 %
\bigstar	Synchrotron frequency f_s	387 Hz	421 Hz
	Hor. beta function β_x at ID	6.86 m	6.86 m
	Ver. beta function β_y at ID	2.36 m	2.36 m
	Hor. dispersion function D_x at ID	0 m	0 m
	Space L for ID	5 m	5 m

 $^1\,$ For the insertion devices a 5 m long U32 undulator with a peak field of 0.91 T was assumed.

CDR baseline DA sufficient, more optimization work foreseen

- Acceptance from 6D tracking without errors > 1mm mrad in x and y
- Nonlinear dynamics optimization based on the achromat concept with additional resonance compensation in the long straights and scans of sextuple and octuple strength, tunes and cell phase advances
- More systematic optimization (e.g. MOGA) studies foreseen

4D tracking, tracking location with β_x =21.7m, β_y =3.7m

PETRA IV Intensity Limit

Requirement

- Store 200 mA in 1600 bunches for brightness mode
- Store 80 mA in 80 bunches for timing mode

200 mA for brightenss mode (0.125 mA per bunch)

- Ion instability is not critical because its risk in PETRA IV will be smaller than PETRA III.
- Will use HOM-damped EU cavities to suppress the coupled bunch instability whose impedances are below stability threshold.
- Transvers instbaility caused by resistive wall impedance is slower than the feedback system (impedance growth 4500 s⁻¹ vs. feedback damping 10,000 s⁻¹).
- It seems possible.

80 mA for timing mode (1 mA per bunch)

- Peak current is as high as 800 A (σ_t = 4 ps) → we will use Landau cavity to reduce the peak current.
- Transverse impedance will be greater than 1 M Ω /m \rightarrow we will operate the ring at high chromaticity to reduce the effective impeance $Z_t(\omega-\omega_{\xi})$.
- Need to investigate with the impedance model.

Wakefield and Impedance

$$\beta * Z(Ring) = \sum_{j}^{Elemetns} \beta_{j} \times Z_{j},$$

where β_i is the lattice function at the impedance element Z_i .

Impedance Elements – Geometric Model (GdfidL*)

* Dr. W. Bruns allowed us to use GdfidL at his company's cluster free of charge.

P0-BPM (PETRA IV)

Undulator Chamber: Taper and Scaling

Circular Taper K. Yokoya (CERN SL/90-88, 1990)

$$Z_t(k) = j \frac{Z_0}{2\pi} \int_{-\infty}^{\infty} \left[\frac{a'}{a(z)} \right]^2 dz$$

Rectangular Taper G. Stupakov (SLAC-PUB-7167, 1996)

$$Z_{y}(k) = j \frac{Z_{0}w}{4} \int_{-\infty}^{\infty} \frac{h'(z)^{2}}{h(z)^{3}} dz$$

Attempt to correct to the next order B. Podobedov, S. Krinsky(PRST AB 9, 054401, 2006)

$$Z_t(k) = j \frac{Z_0}{2\pi a_{av}} \frac{\varepsilon \tan \theta}{1 - \varepsilon^2} \left(1 - \frac{0.18}{\varepsilon} \tan \theta \right), \text{ where } \varepsilon = \frac{a_2 - a_1}{a_2 + a_1}$$

Scaling in longitudinal dimension G. Stupakov , K. Bane, I. Zagorodnov (PRST AB 14, 014402, 2011)

$$U(x, y, z; \lambda) = V\left(x, y, \frac{z}{\lambda}\right) \quad Z_t(k; \lambda) = \frac{1}{\lambda} R_t\left(\frac{k}{\lambda}\right), \quad W_t(s; \lambda) = u_t(s\lambda)$$

Undulator 6-mm Gap Chamber

Transition is from Circular to Elliptic Chamber:

Analytic formula does not exist

Transition length is fixed but aperture varies:

• Longitudinal scaling law may require a careful interpretation.

Resistive Wall Impedance

ImpedanceWake2D (IW2D)

NEG Coated Aluminum Chamber

• NEG (Non Evaporative Getter) compound (Zr, Ti, V) with resistivity: (41.0, 55.6, 26.1) × $10^{-8} \Omega m \rightarrow \rho_{\text{NEG}} = 40 \times 10^{-8} \Omega m$ (theoretical value)

Lattice Considered

	Version 7	Version 15.7
Injection	High Beta	Low Beta
Energy	6	6
Tune	163.14/ 67.27	164.18/ 68.27
Nat. emittance [pm rad]	18.7	17.4
Energy spread [10 ⁻³]	0.67	0.68
Energy loss/turn [MeV]	1.33	1.32
Momentum compaction [10 ⁻³]	0.0160	0.0148
V _{rf} [MV]	6.0	6.0

PETRA IV Impedance (Longitudinal, Transverse)

Element	Number	b _x	b _y	Remarks		
Ring Common						
BPM	1190	6.0	8.8			
Bellow	375	2.2	5.37			
Flange	375	2.23	5.37			
Absorber	3.75	2.23	5.37			
Arc with Insertion Devices						
ID6mm	25	7.8	5.0	5-m ID		
P06mmR	50	7.8	5.0	ID BPM		
ID6mm	4	10.3	10.3	10-m ID		
P06mmR	4	7.8	5.0	ID BPM		
Bellow	125	2.2	5.37			
Flange	125	2.23	5.37			
Absorber	125	2.23	5.37			
Long Straight Section (LSS)						
RF1	24	7.9	7.8	Fundamental RF		
RF3	24	7.9	7.8	Harmonic RF		
LFB	8	7.9	7.8	Longitudinal Feedback		
FCT	4	7.9	7.8	Fast Current Monitor		
Short Straight Section (SSS)						
TFBV	2	11.0	8.4	Transverse Feedback		
TFBH	2	11.0	8.4	Transverse Feedback		
HSCR	1	7.4	9.3	Scraper		
VSCR	1	7.4	9.3	Scraper		
VCOL	4	7.4	9.3	Collimator		
Injection Straight						
InjKicker	4	11.0	8.4	Kicker		
ExtKicker	4	11.0	8.4	Kicker		

Landau Cavity (harmonic number = 3)

Impedance Effect on Phase Space (t-p)

Current = 1 mA

Longitudinal Impedance and IBS Effect

- Because of the small momentum compaction factor $\alpha = 1.45 \times 10^{-5}$, the microwave instability starts very early I_{th}=0.3 mA. Howver, this is still below the brightness mode current (0.125 mA/bunch) and, for the timinng mode experiment (1.0 mA/bunch), the energy spread is not as critical as for the brightness mode.
- Intra-beam scattering is due to multiple Coulomb scattering, which changes the beam dimensions.

Beam Lifetime

- The radiation safety sets the requirement of 0.5 hour lifetime for 100-mA stored beam.
- In PETRA IV storage ring the beam lifetime is dominated by Touschek-effect.
- Even if we provide >7% rf acceptance, the local momentum acceptance (LMA) determines the upper limit due to strong nonlinearity.
- We have a sufficient LMA for the timing mode (1.2 hour for 1 mA per bunch).

20% coupling

Bunch Parameters of PETRA IV (CDR Version)

	Reference	Brightness Mode	Timing Mode
Current (mA)	0.01	0.125	1.0
ε _x (pm)	7.37	11.60	19.21
ε _v (pm)	1.46	2.32	3.84
σ _z (mm)	11.7	13.7	19.3
σ _t (ps)	39.1	45.7	64.3
σ _p (10 ⁻³)	0.914	0.963	1.562
Lifetime (hrs)	49.4	4.7	1.2

• Final beam parameters including the effects of IBS, higher-harmonic RF system, and impedance.

Single Bunch Current Limit

- In PETRA IV the full intensity of charge per bunch is injected on-axis.
- It is well known that increasing the head-tail phase χ=4ω_ξσ_τ will reduce the growth rate as ~1/(1+m), where m is the azimuthal mode close to χ/2π. It also reduce the effective imepdance.
- We can store up to 4 mA per bunch based on the impedance model. However, the radiation safety sets the limit to be 2 mA (storage ring limit).

Impedance Model Error Tolerance (40%)

- The required single bunch current for the timing mode is at least 1 mA per bunch.
- With bunch-lengthening and high chromaticity we found the timing mode is possible.
- We set the intensity to deliver in the ideal condition is 2 mA per bunch. This sets the impedance budget to be 40% higher than the current model. This allows us to:
 - reduce the aperture of round chamber down to 17 mm from 20 mm,
 - increase the undulator chambers impedance by 30%, and
 - Add the geometric impedance of unknown components to the model up to 40% increase in the magnitude.

	Impedance (MΩ/m)	Normalized (%)	Risk Analysis	Increase (%)	Budget (MΩ/m)
RW (Ring)	0.286	20.6	Smaller aperture	63	0.47
RW (ID)	0.701	50.3	Smaller gap NEG surface impedance	30	0.91
Geometric	0.404	29.1	Unknown elements	40	0.56
Total	1.390	100		40	1.94

Collective Effects in Progress

We can deliver the beam with the required property; however, we still need to investigate:

Beam Dynamics

- Steady state beam profiles with transient beam loading effect of an arbitrary fill pattern in collabortion with MAX IV.
- Booster ramping simulation to establish the impedance budget.
- Injection simulation of stroage ring with nonlinear magnet effects to determine the injection efficiency.
- Coupled bunch instability analysis in the combined rf systems including Landau cavities and the active feedback system.
- Quantitative evaluation of ion trap and instabilities of an arbitrary fill pattern in the storage ring in collaboration with Argonne.

Impedance Model

- Develop the surface impedance model of rough surface
 - NEG coated chamber,
 - Microwave range (10~100 GHz) bridging the gap between the low (K.Bane) and high (A.Novokhatski) frequency model of 1 μm protrusion.
- Develop the short bunch wake potentials of PETRA IV (TDR)
 - $\sigma_t = 1 \text{ ps} (\sigma_z = 0.3 \text{ mm}).$

PETRA IV Project Office

Project structure established

DESY.

PETRA IV – Timeline (Old Reference)

XFEL, FLASH and PETRA IV will be major research facilities of the Science City Bahrenfeld

The Hamburg Senate, the Altona district, DESY and the University of Hamburg presented the plans for a science district in western Hamburg at a press conference

DESY-TEMF Meeting | Yong-Chul Chae | November 28, 2019

We hope a bright source and a bright future in Hamburg.

Thank you very much for your time and attention!