Experimental observation of a frequency detuning dependent RF gun coupler kick

Contents

- Updates on XFEL-related studies at PITZ
- Experiments of gun coupler kick
- Summary

Ye Chen DESY-TUD Collaboration Meeting 13.06.2019, Darmstadt

Updates on XFEL-related studies at PITZ

Motivation & (some) Topics

Motivation

- Tackling XFEL operation issues at PITZ due to limited beam time for accelerator studies at XFEL

Topics

- Gun quads for beam asymmetry compensation
- Longitudinal bunch profile modification ("sub-structure")
- Orbit change of bunches along the train

– etc.

Gun quads for beam asymmetry compensation

Gun Quad OptimiserMk2

- New pair of gun quads installed →additional degree of freedom for "round beam" optimization
- Quads online tuning with multi-parameter optimization algorithm (M. Krasilnikov, G. Loisch)
- Test results obtained in March-April 2019
 - Beam profiles on a set of downstream screens
 - Emittance w/ and w/o quads

Gun quads for beam asymmetry compensation Result A

	w/o gun quads			w/ gun quads		
	X_rms	Y_rms	Roundn.	X_rms	Y_rms	Roundn.
Low.Scr1	1.61	1.58	0.06	1.50	1.62	0.04
Low.Scr3	1.00	0.92	0.18	0.94	0.95	0.07
High.Scr1	0.36	0.26	0,53	0.30	0.28	0.1
High.Scr3	0.48	0.46	0.12	0.44	0.43	0.11
High.Scr5	0.68	0.74	0.21	0.68	0.68	0.10

Same settings of gun quads for **beam profiles** on different screen locations

→Seems 4-quads configuration can deliver round beam simultaneously at multiple positions

Gun quads for beam asymmetry compensation Result B

Emittance measurement w/ and w/o gun quads

(250pC, flat-top 7ps, Gun 6.3 MeV/c, Booster exit 18.7 MeV/c)

 \rightarrow 4-quads configuration (further) improving emittance

Longitudinal bunch profile modification ("sub-structure") M. Krasilnikov, H. Qian

Simulations expect simple broadening of Gaussian distribution but measurements show wider current profile with sub-structure

→ observed at 130 MeV dogleg at XFEL

Measuring e-bunch profile by TDS vs.

- BSA size
- Temporal laser pulse profile
- Temporal laser pulse length
- Bunch charge
- RF gun phase

OSS back into operation → improved cathode laser diagnostics

Longitudinal bunch profile modification ("sub-structure")

Result A

Experiments carried out in different emission regimes \rightarrow no sub-structures observed

Longitudinal bunch profile modification ("sub-structure") Result B

Bunch charge (space charge) and rf phase (rf compression) varied \rightarrow no sub-structures observed

XFEL Observation

Orbit change of bunches along the train observed at XFEL

-0.640 ^[a] X-direction **[b] Y-direction** BPM24@~1m: Δr ~ 100 μm -0.650 -1.020 -0.66(-1.030 70µm BPM25@~2.1m: Δr ~ 231 μm -0.670 mm -1.040 -0.680 -1.050 -0.690 -1.060 -0.700 -1.070 -0.710 -1.080-0.720 -1.090-0.730 -1.100800 850 900 950 1000 1050 1100 800 850 900 950 1000 1050 1100 t [µs] t [µs]

BPM24@~1m downstream for **300µs** bunch train@4.5MHz

The offset showing dependencies on

- Gun detuning from -250Hz to +6.7kHz
- Bunch charge 100-300 pC
- Gun phase over the RF phase by 10 deg
- Gun amplitude over the RF phase by 0.3MV/m

 → But, the change over the bunch train remained
 ~same

Courtesy: Frank Brinker

Kick behaviors in simulations

see 10.3204/PUBDB-2018-05590 for simulated results

- Part I: Simulation of coupler kick
- [Y. Chen et al, WEP005, FEL'17]
- → Component: main **dipole** + small quadrupole
- → Strength: K~0.65 mrad@6.5MW
- \rightarrow Integral kick region: 0.19~0.23 m (end of coupler)
- → Single bunch (20ps) tilting: $\Delta K_{head-tail}$ ~0.05 mrad → emittance growth
- Part II: Simulation of transient kick slope on rf gun phase vs. frequency detuning, Δf
 → Kick slope on phase varying vs. Δf

 Part III: Simulation of frequency detuning dependency of the kick

- Kick strength depends on Δf
 Bunches along train within rf pulse see different Δf
- → Kick varies along the train
- → Kick slope on ∆f almost linear

Based on simulation studies, what are to be verified in experiments:

- dK/d Φ varies vs. Δf
- $dK/d\Delta f$ (or dK/dT) ~ linear
- for a fixed dK/d Δ f, Δ K_{head-tail} ~ constant for a given train

K: kick strength, Φ : rf gun phase

 Δf : frequency detuning, T: gun cooling water temperature

setup & procedures

- Use e-beam for measuring transverse RF kick properties
- Setup & procedures

- ¹ temperature set-point further characterized by S11
- ² keep solenoid current unchanged
- ³ check if MMMG phase varies for different T (\rightarrow no change found)
- ⁴ if beam momentum varies for different T, adjust gun SP to keep momentum unchanged (→ within ±0.5)

- Select individual bunches along the train for measurements by every time adjusting timing of the camera at the observation screen and NoP for the very last pulse of all sub-trains
- ⁵ background taken: adjust timing→NoP-1→taking image while keeping shutter open
- ⁶ if laser train not flat, tune laser intensity for having same bunch charge along the train Page 12

setup & procedures

- Use e-beam for measuring transverse RF kick properties
- Setup & procedures

```
0 gun quads applied for round beam on H1.S1 ~5.28m
```

- frequency detuning adjusted by tuning gun cooling water temperature (T)
 measure the change of bunch position (Δr) and size (Δσ) on H1.S1 when changing T (/Δf) and gun phase (Φ)
- ¹ temperature set-point further characterized by S11
- ² keep solenoid current unchanged
- ³ check if MMMG phase varies for different T (\rightarrow no change found)
- ⁴ if beam momentum varies for different T, adjust gun SP to keep momentum unchanged (→ within ±0.5)

- Select individual bunches along the train for measurements by every time adjusting timing of the camera at the observation screen and NoP for the very last pulse of all sub-trains
- ⁵ background taken: adjust timing→NoP-1→taking image while keeping shutter open
- ⁶ if laser train not flat, tune laser intensity for having same bunch charge along the train Page 13

Measured phase slope of the kick

Measured phase slope of the kick vs. Temperature

Measured temperature / frequency detuning slope of the kick

Measured temperature slope of the kick at different gun phases

Bunch train mode: orbit change

Measured orbit change along the train at different gun phases

Take radial position change $\Delta r \sim 320 \mu m$ @ downstream screen location $z \sim 5.28 m$, \rightarrow kick difference between train head and tail, $\Delta K \sim 0.063 mrad$

Peak to Peak orbit change along the train

	Head-Tail Orbit Change					
Observation Position	EuXFEL Observation	PITZ Simulation	PITZ Experiment (scaled* to EuXFEL case)			
z ≈ 1.0 m	~100 µm	93 µm	~151 µm			
z ≈ 2.1 m	~231µm	216 µm	~359 µm			

*Linearly scaling the kick with bunch train length

Why "coupler focusing" study?

- 1. Disturbed rf fields by the end of coaxial coupler
 - \rightarrow Dipole kick
 - \rightarrow Focusing effect (?)
- 2. Use two field maps to simulate downstream beam focusing
 - → standing wave (Eigen mode) vs. traveling wave (frequency domain)
 - ightarrow both normalized to deliver same beam momentum
 - → different solenoid currents needed for best focusing

- Why "coupler focusing" study?
 - 1. Disturbed rf fields by the end of coaxial coupler
 - \rightarrow Dipole kick
 - \rightarrow Focusing (?)
 - 2. Use **two field maps** to simulate downstream beam focusing
 - → standing wave (Eigen mode) vs. traveling wave (frequency domain)
 - \rightarrow both normalized to deliver same beam momentum
 - → different solenoid currents needed for best focusing

Tracking a bunch through two field maps

Bunch train mode

Bunch train mode

Conditions:

Gun SP = 65 @ MMMG phase, 200µs, Booster off Gun Water Set-Point ~ 73.30°C 100pC, BSA=0.8mm Adjusted laser transmission for same charge along the train

- 1. At same solenoid current, P2P change of the beam size almost same when changing the cooling water temperature of the gun
- 2. Head-tail focusing difference ~ 2A
- 3. Stronger effect for longer train
- 4. Stronger effect for stronger space charge density

Measured beam size change along the train

- Two pairs of gun quads installed allowing "round beam" optimization along beamline & emittance reduction
- No sub-structure of e-bunch temporal profiles observed in PITZ experiments so far when varying bunch charge, BSA size, temporal profile, RF gun phase, emission regime, etc.
- Experiments performed on gun coupler effects at PITZ and measured kick behaviors consistent with simulations
 - dK/dΦ varies vs. Δf
 - dK/d∆f (or dK/dT) ~ linear
 - for a fixed dK/d Δ f, Δ K_{head-tail} ~ constant for a given train
- "Coupler focusing effect" depends on frequency detuning within the rf pulse
 - **2A** difference in solenoid focusing along 140µs bunch train
 - very likely caused by "traveling wave effect" (NOT caused by non-symmetrical geometry of the coupler)
 - can influence beam size, emittance, twiss parameters, etc.

Thank you for your attention!