Calculation of Eigenmodes for Accelerator Cavities with Losses using CIM

V. Pham-Xuan, W. Ackermann and H. De Gersem

Institut für Theorie Elektromagnetischer Felder
Outline of the Talk

Motivation
 Iterative methods
 Contour integral methods

Formulation
 Mathematical model
 Contour integral methods
 Multigrid method as a preconditioner
 Block Krylov methods and recycling Krylov methods

Numerical Results

Possible Improvements
Motivation
 Iterative methods
 Contour integral methods

Formulation
 Mathematical model
 Contour integral methods
 Multigrid method as a preconditioner
 Block Krylov methods and recycling Krylov methods

Numerical Results

Possible Improvements
Motivation

Problem statement

Problem statement: we have to solve a **nonlinear eigenvalue problem (NEP)** where

- the problem is **large and sparse**;
- the number of eigenvalues is large;
- **prior information** about eigenvalues is available;
- in several applications, one is only interested in a **few eigenvalues within a certain range**.

Figure: Chain of cavities (from [1])

Available methods:

- Iterative methods: Jacobi-Davidson [2], Arnoldi, Lanczos, etc.
- Contour integral methods: Beyn methods [3], resolvent sampling based Rayleigh-Ritz method (RSRR) [4], etc.
Motivation
 Iterative methods
 Contour integral methods

Formulation
 Mathematical model
 Contour integral methods
 Multigrid method as a preconditioner
 Block Krylov methods and recycling Krylov methods

Numerical Results

Possible Improvements
Motivation
Iterative methods (Jacobi-Davidson)

Lossy accelerator cavity: eigenvalues are in the complex plane

- choose an initial guess
- expand the search space ...
- until an approximate solution is found
Lossy accelerator cavity: eigenvalues are in the complex plane

- choose an initial guess
- expand the search space ...
- until an approximate solution is found
- choose another initial guess
- continue expanding the search space ...
- find another approximate solution
Motivation
Iterative methods (Jacobi-Davidson)

Lossy accelerator cavity: eigenvalues are in the complex plane

• choose an initial guess
• expand the search space ...
• until an approximate solution is found

• if we choose unsuitable initial guess
• the algorithm will converge to ...
• a previously determined eigenvalue!!!!!
Presentation Outline

Motivation
 Iterative methods
 Contour integral methods

Formulation
 Mathematical model
 Contour integral methods
 Multigrid method as a preconditioner
 Block Krylov methods and recycling Krylov methods

Numerical Results

Possible Improvements
Motivation
Contour integral methods

An accurate computation of eigenpairs inside a region enclosed by a non-self-intersecting curve.

- choose a region to look for eigenvalues
- the region can be of any shape, e.g rectangle, circle/ellipse.
An accurate computation of eigenpairs inside a region enclosed by a non-self-intersecting curve.

- choose a region to look for eigenvalues
- the region can be of any shape, e.g. rectangle, circle/ellipse.
- most computation is spent to solve linear equation systems at different interpolation points, which can be parallelized.
Motivation
- Iterative methods
- Contour integral methods

Formulation
- Mathematical model
- Contour integral methods
- Multigrid method as a preconditioner
- Block Krylov methods and recycling Krylov methods

Numerical Results

Possible Improvements
Presentation Outline

Motivation
- Iterative methods
- Contour integral methods

Formulation
- Mathematical model
- Contour integral methods
- Multigrid method as a preconditioner
- Block Krylov methods and recycling Krylov methods

Numerical Results

Possible Improvements
The combination of Maxwell-Ampère equation and the Maxwell-Faraday equation results in the double-curl equation

\[\nabla \times \frac{1}{\mu} \nabla \times \vec{E} + j\omega \sigma \vec{E} = \varepsilon \omega^2 \vec{E} \]

(1)

Applying the Galerkin's approach to discretize (1) results in an eigenvalue problem

\[A^{3D}x + j\omega \mu_0 C^{3D}x - \omega^2 \mu_0 \varepsilon_0 B^{3D}x = 0 \]

(2)

which includes only losses from volumetric lossy material. Special treatment is carried out to incorporate 2D losses at port interfaces into (2), resulting in a nonlinear eigenvalue problem (NEP)

\[P(z)x = 0 \]

(3)

where \(z = \left(\frac{\omega}{2\pi f_\tau} \right)^2 \)
Presentation Outline

Motivation
- Iterative methods
- Contour integral methods

Formulation
- Mathematical model
- Contour integral methods
- Multigrid method as a preconditioner
- Block Krylov methods and recycling Krylov methods

Numerical Results

Possible Improvements
To solve $P(z)x = 0$ most of the standard eigenvalue algorithms exploit a projection procedure in order to extract approximate eigenvectors from a given subspace.

1. Construct an approximate eigenspace Q
2. Obtain matrix Q
3. Project the original NEP to a reduced NEP using Rayleigh-Ritz procedure:

 $P_Q(z) = Q^H P(z) Q$
4. Solve the reduced NEP

 $P_Q(z)g = 0$
5. Compute eigenpairs of the original NEP

 same eigenvalues as for the reduced problem; eigenvectors $x = Qg$
The evaluation of Q requires the computation of

$$\frac{1}{2\pi i} \oint_{\Gamma} P(z)^{-1} V dz$$ \hspace{1cm} (4)$$

$P(z_n)$ is the matrix system at an integration point z_n. V is a random matrix.

The most expensive operation is to compute

$$X = P^{-1}(z_i) V$$ \hspace{1cm} (5)$$
Presentation Outline

Motivation
- Iterative methods
- Contour integral methods

Formulation
- Mathematical model
- Contour integral methods
- Multigrid method as a preconditioner
- Block Krylov methods and recycling Krylov methods

Numerical Results

Possible Improvements
The most expensive operation is to compute

\[X = P^{-1}(z_i)V \]

\[(6) \]

equivalent to solving the linear system

\[P(z_i)X = V \]

\[(7) \]

- Direct inverse becomes prohibitively expensive for large problems.
- For large-scale problems, iterative methods are preferable.
- Linear systems generated by Maxwell’s equations are extremely ill-conditioned.
- Krylov iterative solvers with simple preconditioners often stagnate or diverge when applied to such linear systems.
- **Suitable preconditioners/iterative solvers** should be applied to improve the convergence of the iterative solvers.
Formulation
Multigrid method as a preconditioner

Formulation
Multigrid method as a preconditioner

\[M^{-1} b = e \]
\((8) \)

This equation is repeatedly computed at each iteration where \(M \) is the preconditioner, \(b \) is the input and \(e \) is the output. The output is computed by solving systems of the type

\[P_{ii} e_i = b_i - \sum_{i \neq j} P_{ij} e_j \]
\((9) \)

where \(i \) and \(j \) refer to the order of the trial and test functions.

Presentation Outline

Motivation
- Iterative methods
- Contour integral methods

Formulation
- Mathematical model
- Contour integral methods
- Multigrid method as a preconditioner
- Block Krylov methods and recycling Krylov methods

Numerical Results

Possible Improvements
At each integration point, we need to solve a system with multiple right-hand-sides (RHSs)
At each integration point, we need to solve a system with multiple right-hand-sides (RHSs).

We sequentially solve for each RHS. Each solution is approximated from a Krylov space $x_i \in \mathcal{K}(P, v_i)$.
At each integration point, we need to solve a system with multiple right-hand-sides (RHSs)

We sequentially solve for each RHS. Each solution is approximated from a Krylov space $x_i \in \mathcal{K}(P, v_i)$
Formulation

Block Krylov methods

At each integration point, we need to solve a system with multiple right-hand-sides (RHSs).

We sequentially solve for each RHS. Each solution is approximated from a Krylov space
\[x_i \in \mathcal{K}(P, v_i) \]

The block Krylov methods solve for all RHSs at once. Each solution is approximated from a larger subspace
\[\mathcal{B} = \mathcal{K}(P, v_1) + \ldots + \mathcal{K}(P, v_n) \]
Formulation
Recycling Krylov methods

\[\begin{array}{ccc}
P(z) & X & V \\
\cdot & = & \\
\end{array} \]

Approximate the first solution from \(\mathcal{K}(P, v_1) \)
Formulation
Recycling Krylov methods

Approximate the first solution from $\mathcal{K}(P, v_1)$

Approximate the second solution from $\mathcal{R}^{(1)} + \mathcal{K}(P, v_2)$
Formulation
Recycling Krylov methods

Approximate the first solution from $\mathcal{K}(P, v_1)$

Approximate the second solution from $\mathcal{R}^{(1)} + \mathcal{K}(P, v_2)$

Approximate the third solution from $\mathcal{R}^{(2)} + \mathcal{K}(P, v_3)$
Presentation Outline

Motivation
 - Iterative methods
 - Contour integral methods

Formulation
 - Mathematical model
 - Contour integral methods
 - Multigrid method as a preconditioner
 - Block Krylov methods and recycling Krylov methods

Numerical Results

Possible Improvements
Numerical Results
Accuracy Validation

- Name: spherical cavity
- Electrical conductivity: 62×10^6 S/m
- Radius: 1m
- Degrees of freedom: 7914/18728/36730/98244/205056
- Target frequency: 125MHz
- Number of eigenvalues: 3
- Algorithm parameters:
 - Region: rectangle$(1.0, 1.5, 1.0 \times 10^{-15}, 0.05)$
 - $N = 20$ (number of integration points)
 - $L = 20:10:100$ (number of columns of the random matrix)
 - $K = 2$ (for BEYN2)
 - Rank tolerance = 1.0×10^{-10}
Numerical Results

Accuracy Validation

\[\epsilon_f = \frac{\| f - f_{\text{analytical}} \|}{\| f_{\text{analytical}} \|} \]

\[\epsilon_Q = \frac{\| Q - Q_{\text{analytical}} \|}{\| Q_{\text{analytical}} \|} \]
Numerical Results
Incorporating losses from ports

- Name: spherical cavity with a coupler
- Radius: 1m
- Degrees of freedom: 3294/6158/10854/17880
- Target frequency: 125MHz
- Number of eigenvalues: 3
- Algorithm parameters:
 - Region: rectangle(1.0, 1.5, 1.0 × 10^{-15}, 0.05)
 - N = 20 (number of integration points)
 - L = 20:10:100 (number of columns of the random matrix)
 - K = 2 (for BEYN2)
 - Rank tolerance = 1.0 × 10^{-10}
Numerical Results
Incorporating losses from ports

<table>
<thead>
<tr>
<th>DOF</th>
<th>3294</th>
<th>6158</th>
<th>10854</th>
<th>17880</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq. 1 (MHz)</td>
<td>130.641496</td>
<td>130.579307</td>
<td>130.543168</td>
<td>130.561674</td>
</tr>
<tr>
<td>Freq. 2 (MHz)</td>
<td>130.810936</td>
<td>130.756186</td>
<td>130.706348</td>
<td>130.698581</td>
</tr>
<tr>
<td>Freq. 3 (MHz)</td>
<td>130.821949</td>
<td>130.760146</td>
<td>130.724020</td>
<td>130.699990</td>
</tr>
<tr>
<td>Qual. 1</td>
<td>2.771 842 × 10^2</td>
<td>2.469 505 × 10^2</td>
<td>2.787 006 × 10^2</td>
<td>2.871 997 × 10^2</td>
</tr>
<tr>
<td>Qual. 2</td>
<td>2.716 048 × 10^5</td>
<td>2.875 342 × 10^6</td>
<td>2.192 351 × 10^6</td>
<td>1.114 248 × 10^8</td>
</tr>
<tr>
<td>Qual. 3</td>
<td>2.109 400 × 10^6</td>
<td>2.836 039 × 10^7</td>
<td>7.579 235 × 10^6</td>
<td>1.663 706 × 10^7</td>
</tr>
</tbody>
</table>

Table: Resonant frequencies and quality factors of spherical cavity with a coupler for different mesh sizes
Numerical Results
Recycling Subspace Methods

Using recycling subspace methods provided by a framework for high-performance domain decomposition methods (HPDDM) [5]

- Name: spherical cavity with a coupler
- Radius: 1m
- Degrees of freedom: 17880
- Number of RHSs: 20
- Tolerance: 10×10^{-9}

<table>
<thead>
<tr>
<th>Krylov Methods</th>
<th>GMRES</th>
<th>GCRODR-5</th>
<th>GCRODR-10</th>
<th>GCRODR-20</th>
<th>BGMRES</th>
<th>BGCRODR</th>
</tr>
</thead>
<tbody>
<tr>
<td>average # of iterations</td>
<td>29</td>
<td>25.2</td>
<td>25.1</td>
<td>24.3</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>runtime (s)</td>
<td>18.4</td>
<td>22.5</td>
<td>20.5</td>
<td>20.5</td>
<td>19</td>
<td>23.8</td>
</tr>
</tbody>
</table>

Table: Number of iterations and runtime for different Krylov methods
Numerical Results

Recycling Subspace Methods

Using recycling subspace methods provided by a framework for high-performance domain decomposition methods (HPDDM) [5]

- Name: Tesla cavity with a main coupler
- Degrees of freedom: 60970
- Number of RHSs: 20
- Tolerance: 10×10^{-9}

<table>
<thead>
<tr>
<th>Krylov Methods</th>
<th>GMRES</th>
<th>GCRODR-5</th>
<th>GCRODR-10</th>
<th>GCRODR-20</th>
<th>BGMRES</th>
<th>BGCRODR</th>
</tr>
</thead>
<tbody>
<tr>
<td>average # of iterations</td>
<td>31.7</td>
<td>26.4</td>
<td>26.3</td>
<td>25.9</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>runtime (s)</td>
<td>69</td>
<td>63.3</td>
<td>76.8</td>
<td>61.2</td>
<td>89.2</td>
<td>78.9</td>
</tr>
</tbody>
</table>

Table: Number of iterations and runtime for different Krylov methods
Presentation Outline

Motivation
 Iterative methods
 Contour integral methods

Formulation
 Mathematical model
 Contour integral methods
 Multigrid method as a preconditioner
 Block Krylov methods and recycling Krylov methods

Numerical Results

Possible Improvements
Possible Improvements

- Improve the speed of exporting system matrices.
Possible Improvements

- Improve the speed of exporting system matrices.
- Improve the efficiency in using block iterative methods.
Possible Improvements

- Improve the speed of exporting system matrices.
- Improve the efficiency in using block iterative methods.
- Apply the Auxiliary Space Preconditioning [6, 7, 8] to reduce the cost in solving iterative problems.
Thank you for your attention

Appendix
Iterative methods (Jacobi-Davidson)

Lossless accelerator cavity: eigenvalues are on real axis

- choose an initial guess
- expand the search space ...
- until an approximate solution is found
Appendix
Iterative methods (Jacobi-Davidson)

Lossless accelerator cavity: eigenvalues are on real axis

- choose an initial guess
- expand the search space ...
- until an approximate solution is found
- the solution becomes the new initial guess
- continue expanding the search space ...
The resolvent $P(z)^{-1}$ reveals the existence of eigenvalues, indicates where eigenvalues are located, and show how sensitive these eigenvalues are to perturbation.

As explained in [3], from Keldysh’s theorem, we know that the resolvent function $P(z)^{-1}$ can be written (for simple eigenvalues λ_i) as

$$P(z)^{-1} = \sum_i v_i w_i^H \frac{1}{z - \lambda_i} + R(z) \quad (10)$$

where

- v_i and w_i are suitably scaled right and left eigenvectors, respectively, corresponding to the (simple) eigenvalue λ_i
- $R(z)$ and $P(z)$ are analytic functions
Appendix

Contour integral methods

Some basic spectral theory

$$Q = (q_1, q_2, \ldots, q_k)$$

$$\text{span}\{q_1, q_2, \ldots, q_k\} \supseteq \text{span}\{v_1, v_2, \ldots, v_{n(\Gamma)}\}$$

$$P(z)^{-1} = \sum_i v_i w_i^H \frac{1}{z - \lambda_i} + R(z)$$

Applying Cauchy’s integral formula

$$\frac{1}{2\pi i} \oint_{\Gamma} f(z) P(z)^{-1} dz = \sum_{i=1}^{n(\Gamma)} f(\lambda_i) v_i w_i^H$$

In practice, we evaluate the integral

$$\frac{1}{2\pi i} \oint_{\Gamma} f(z) P(z)^{-1} \hat{V} dz$$
Appendix

Contour integral methods

Some basic spectral theory

\[P(z)^{-1} = \sum_{i} v_i w_i^H \frac{1}{z - \lambda_i} + R(z) \]

Applying Cauchy’s integral formula

\[\frac{1}{2\pi i} \oint f(z) P(z)^{-1} dz = \sum_{i=1}^{n(\Gamma)} f(\lambda_i) v_i w_i^H \]

In practice, we evaluate the integral

\[\frac{1}{2\pi i} \oint f(z) P(z)^{-1} \hat{V} dz \]

Using interpolation, we obtain

\[\frac{1}{2\pi i} \oint f(z) P(z)^{-1} \hat{V} dz = \sum_{i=1}^{n_{int}} \xi_i f(z_i) P(z_i)^{-1} \hat{V} \]

\[Q = (q_1, q_2, ..., q_k) \]

\[\text{span}\{q_1, q_2, ..., q_k\} \supseteq \text{span}\{v_1, v_2, ..., v_{n(\Gamma)}\} \]
Appendix

Contour integral methods

Beyn1 (for a few eigenvalues)

Define the matrices A_0 and $A_1 \in \mathbb{C}^{n \times k}$

\[A_0 = \frac{1}{2\pi i} \oint_{\Gamma} P(z)^{-1} \hat{V} dz \] (11)

\[A_1 = \frac{1}{2\pi i} \oint_{\Gamma} zP(z)^{-1} \hat{V} dz \] (12)

Then $A_0 = VW^H \hat{V}$ and $A_1 = V \Lambda W^H \hat{V}$ where

- $\Lambda = \text{diag}(\lambda_1, ..., \lambda_{n(\Gamma)})$
- $V = \begin{bmatrix} v_1 & \cdots & v_{n(\Gamma)} \end{bmatrix}$
- $W = \begin{bmatrix} w_1 & \cdots & w_{n(\Gamma)} \end{bmatrix}$

\hat{V} is a random matrix $\hat{V} \in \mathbb{C}^{n \times L}$. L is smaller than n and equal or greater and k
Appendix

Contour integral methods

Beyn1 (for a few eigenvalues)

Beyn’s method is based on the singular value decomposition of A_0

$$A_0 = V_0 \Sigma_0 W_0^H$$ \hspace{1cm} (13)

Beyn has shown that the matrix

$$B = V_0^H A_1 W_0^H \Sigma_0^{-1}$$ \hspace{1cm} (14)

is diagonalizable. Its eigenvalues are the eigenvalues of P inside the contour and its eigenvectors lead to the corresponding eigenvectors of P.
Appendix
Contour integral methods
Beyn2 (for many eigenvalues)

Define the matrices $A_p \in \mathbb{C}^{n \times k}$

$$A_p = \frac{1}{2\pi i} \oint_{\Gamma} z^p P(z)^{-1} \hat{V} dz$$ \hspace{1cm} (15)

Then $A_p = V\Lambda^p W^H \hat{V}$. The matrices B_0 and B_1 are defined as follows

$$B_0 = \begin{pmatrix} A_0 & \cdots & A_{K-1} \\ \vdots & \ddots & \vdots \\ A_{K-1} & \cdots & A_{2K-2} \end{pmatrix} \hspace{1cm}; \hspace{1cm} B_1 = \begin{pmatrix} A_1 & \cdots & A_K \\ \vdots & \ddots & \vdots \\ A_K & \cdots & A_{2K-1} \end{pmatrix}$$ \hspace{1cm} (16)
Appendix
Contour integral methods
Beyn2 (for many eigenvalues)

Performing the singular value decomposition of B_0

$$B_0 = V_0 \Sigma_0 W_0^H$$ \hspace{1cm} (17)

Beyn has shown that the matrix

$$D = V_0^H B_1 W_0^H \Sigma_0^{-1}$$ \hspace{1cm} (18)

is diagonalizable. Its eigenvalues are the eigenvalues of P inside the contour and its eigenvectors lead to the corresponding eigenvectors of P.
Appendix

Contour integral methods

Resolvent Sampling based Rayleigh-Ritz method

The Beyn2 algorithm is robust and accurate if a large L but a small K are used.

However, for large-scale problems, a small L is essential to reduce the computational burden.

Decrease L and increase K make the algorithm unstable and inaccurate.
Appendix

Contour integral methods

Resolvent Sampling based Rayleigh-Ritz method

The Beyn2 algorithm is robust and accurate if a large L but a small K are used.

However, for large-scale problems, a small L is essential to reduce the computational burden.

Decrease L and increase K make the algorithm unstable and inaccurate.

RSRR reduce the number of columns of V.

Let $Q \in \mathbb{C}^{n \times k}$ be an orthogonal basis of search space, then the original NEP can be converted to the following reduced NEP

$$P_Q(z)g = 0$$
Appendix

Contour integral methods

Resolvent Sampling based Rayleigh-Ritz method

(1) Initialization: Fix the contour Γ, the number N and the sampling points z_i. Fix the number L and generate a $n \times L$ random matrix U

(2) Compute $P(z_i)^{-1}U$ for $i = 0, 1, ..., N - 1$

(3) Form S as follows

$$S = \begin{bmatrix} P(z_0)^{-1}U, & P(z_1)^{-1}U, & \cdots, & P(z_{N-1})^{-1}U \end{bmatrix} \in \mathbb{C}^{n \times N \cdot L} \tag{19}$$

(4) Generate the matrix Q via the truncated singular value decomposition $S \approx Q \Sigma V^H$.

(5) Compute $P_Q(z) = Q^H P(z) Q$, and solve the projected NEP $P_Q(\lambda)g = 0$ using the SS-FULL algorithm to obtain $n(\Gamma)$ eigenpairs (g_j, λ_j).

(6) Compute the eigenpairs of the original NEP via the eigenpairs of the reduced NEP.
Appendix
Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC)

CST

CEM3D [9]

cavity design, FEM discretization

Solve nonlinear eigenvalue problem

generate matrices $P(z_i)$
Appendix

Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC)

Parallell level 1:
- multiple contours

Parallel level 2:
- compute nodes in parallel (implemented in codes)

Parallel level 3:
- parallelize computation at each node (implemented in the codes)

\[P(\lambda)x = v \]

\[x = P(z)^{-1}v \]
Appendix

Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC)

Parallel level 1:
multiple contours

Parallel level 2:
compute nodes in parallel (implemented)

Parallel level 3:
parallelize computation at each node (implemented in the codes)

\[P(\lambda)x = v \]

or \[x = P(z)^{-1}v \]
Appendix

Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC)

Parallel level 1: multiple contours

Parallel level 2: compute nodes in parallel (implemented)

Parallel level 3: parallelize computation at each node (implemented in the codes)

\[P(\lambda)x = v \text{ or } x = P(z)^{-1}v \]

\[V \oint_{\Gamma} P^{-1}(z)V dz \]
Appendix
Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC)

Parallel level 1: multiple contours

Parallel level 2: compute nodes in parallel (implemented)

Parallel level 3: parallelize computation at each node (implemented in the codes)

\[P(\lambda)x = v \quad \text{or} \quad x = P(z)^{-1}v \]

\[\oint_{\Gamma} P^{-1}(z)V dz \]
Appendix

Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC)

Parallel level 1: multiple contours
Parallel level 2: compute nodes in parallel (implemented)
Parallel level 3: parallelize computation at each node (implemented in the codes)

\[P^{-1}(\lambda)x = v \]

\[P^{-1}(z)V \]

\[\oint_{\Gamma} P^{-1}(z)V \, dz \]
Appendix

Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC)

Parallel level 1: multiple contours

Parallel level 2: compute nodes in parallel (implemented)

Parallel level 3: parallelize computation at each node (implemented)

\[P(\lambda)x = v \]

or

\[x = P(z)^{-1}v \]
Appendix

Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC)

Parallel level 1: multiple contours

Parallel level 2: compute nodes in parallel (implemented)

Parallel level 3: parallelize computation at each node (implemented)

\[P(\lambda) x = v \]

or \[x = P(z)^{-1} v \]
Appendix

Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC)

NES4AC highlights:

- extends the functionality of CEM3D [9].
- parallelized and developed in C++.
- based on PETSc (Portable, Extensible Toolkit for Scientific Computation) v3.3.0 and LAPACK.
- adopts the parallel scheme of the contour integral method from SLEPc (Scalable Library for Eigenvalue Problem Computations).
- uses the superLU_DIST for the computation of LU decompositions.
- including three contour integral algorithms for eigenvalue solution: Beyn1 (for a few eigenvalues), Beyn2 (for many eigenvalues) and RSRR.
- with two types of closed contour: ellipse and rectangle.
The combination of Maxwell-Ampère equation and the Maxwell-Faraday equation results in the double-curl equation

\[\nabla \times \left(\frac{1}{\mu} \nabla \times \vec{E} \right) + j\omega \sigma \vec{E} = \varepsilon \omega^2 \vec{E} \]

(20)

Applying the Galerkin’s approach to discretize (1) results in an eigenvalue problem

\[A^{3D} x + j \omega \mu_0 C^{3D} x = \omega^2 \mu_0 \varepsilon_0 B^{3D} x \]

(21)
Appendix
Target frequency in CEM3D

where

\[A_{ij}^{3D} = \int \int \int_{\Omega} \frac{1}{\mu_r} \nabla \times \vec{w}_i \cdot \nabla \times \vec{w}_j d\Omega \] \hspace{1cm} (22)

\[B_{ij}^{3D} = \int \int \int_{\Omega} \varepsilon_r \vec{w}_i \cdot \vec{w}_j d\Omega \] \hspace{1cm} (23)

\[C_{ij}^{3D} = \int \int \int_{\Omega} \sigma \vec{w}_i \cdot \vec{w}_j d\Omega \] \hspace{1cm} (24)
Appendix
Target frequency in CEM3D

Equation 21 can be rewritten as follows

\[(A^{3D} + j\omega_0C^{3D})x = (\frac{\omega}{C_0})^2 B^{3D} x\] \hspace{1cm} (25)

\[s(A^{3D} + j\omega_0C^{3D})x = s^2(\frac{\omega}{C_0})^2 \frac{B^{3D}}{s} x\] \hspace{1cm} (26)

\[A^{CEM3D} x = \lambda B^{CEM3D} x\] \hspace{1cm} (27)

where

\[s = \frac{C_0}{2\pi f_T}\] \hspace{1cm} (28)