DOE laser beam shaping at XFEL
On the Generation of Spatial Flat-Top Laser Spots
and the Influence of Optical Errors on the Beam Dynamics

DESY/TEMF Meeting, Spring 2018
TEMF, Darmstadt, 8.6.2018

Optical Setup:
Steffen Schmid (TEMF), Sebastian Pumpe (DESY)

Beam Simulations:
Martin Dohlus (DESY)
DOE laser beam shaping at XFEL
On the Generation of Spatial Flat-Top Laser Spots
and the Influence of Optical Errors on the Beam Dynamics

Optical Setup
Steffen Schmid (TEMF), Sebastian Pumpe (DESY)

Beam Simulations:
Martin Dohlus (DESY)
Laser Beam of the XFEL-Photogun

PITZ / XFEL-Photogun

Spatial Laser Spot Profile

⇒ Spatial flat-top profile of laser spot on cathode needed

Two Possibilities:

“Old“: Beam Shaping Aperture (BSA)
“New“: Diffractive Optical Elements (DOE)
"Old Method“ - BSA
(≡ Optical Imaging of an Aperture)

+ Robust against deviations of input beam quality

- Sophisticated imaging system needed
- Smaller spot sizes require larger optics
- 98% of laser intensity gets lost (leads to further problems)
"New Method" - DOE
(≡ Spatial Phase Modulation of Gaussian Laser Beam)

Optical lens transfer function:

\[g_o(x_o, y_o) = e^{i\pi \frac{(x_o^2 + y_o^2)}{\lambda f}} (1 - \frac{z}{f}) \ldots \]

\[\ldots \int \int g_i(x_i, y_i) e^{-\frac{2\pi i}{\lambda f}(x_o \cdot x_i + y_o \cdot y_i)} \, dx_i \, dy_i \]

⇒ Fourier Transformation

(Formula: MIT 2.71/2.710 04/08/09 wk9-b-18)
"New Method" - DOE

(≡ Spatial Phase Modulation of Gaussian Laser Beam)

Optical lens transfer function:

\[g_o(x_o, y_o) = e^{i \pi \frac{(x_o^2 + y_o^2)}{\lambda f} \left(1 - \frac{z}{f}\right)} \]

\[\cdots \int \int g_i(x_i, y_i) e^{-\frac{2\pi i}{\lambda f} (x_o \cdot x_i + y_o \cdot y_i)} \, dx_i \, dy_i \]

⇒ Fourier Transformation

(Formula: MIT 2.71/2.710 04/08/09 wk9-b-18)
“New Method“ - DOE
(≡ Spatial Phase Modulation of Gaussian Laser Beam)

+ “Simple” imaging system
+ Smaller spot sizes (< 50 μm) possible
+ Only ~3% of laser intensity gets lost (increases setup stability)

- Sensitive on input beam quality

DESY. Original slide by Sebastian Pumpe, edited by Steffen Schmid
BSA and DOE spatial shaping at XFEL

Setup

A: BSA

 Efficiency: 10%

B: DOE

 Efficiency: 94%
Wavelength dependence of DOE

XFEL Laser 1: 257 nm
XFEL Laser 2: 266 nm

measured (266 nm)

DOE designed for 257 nm
Measured transverse Profiles und Ideal Pencil Profiles

\[\frac{\sigma_x}{\sigma_z} = 1.19 \]
\[\sqrt{\sigma_x \sigma_y} = 0.256 \text{ mm} \]
\[\rightarrow \text{pencil 1} \]

\[\frac{\sigma_x}{\sigma_z} = 1.18 \]
\[\sqrt{\sigma_x \sigma_y} = 0.272 \text{ mm} \]
\[\rightarrow \text{pencil 2} \]
Measured transverse Profiles and Ideal Pencil Profiles

clipped (saturated)
Summary: Optical Setup

- Laser output to cathode transmission efficiency T increased
 - Beam Shaping Aperture (BSA): $T = 10\%$
 - Diffractive Optical Element (DOE): $T = 94\%$
 - Investigate long-term stability of DOE system

- Laser used for measurements (266nm) \neq DOE design (257nm)
 - Clipped 0th order peak in DOE spot intensity map
 - Repeat measurements with $\lambda_{laser} = 257$nm

- BSA & DOE laser spots are both elliptical
 - Effect of optics downstream of beam shaping setup
DOE laser beam shaping at XFEL
On the Generation of Spatial Flat-Top Laser Spots
and the Influence of Optical Errors on the Beam Dynamics

Optical Setup
Steffen Schmid (TEMF), Sebastian Pumpe (DESY)

Beam Simulations
Martin Dohlus (DESY)
Gun Simulation with Krack

Krack is an implementation of a Poisson solver (approach 2 or EB-method); it uses binning of the charge to an equidistant grid and the convolution with a kernel function (charged cuboids).

The start distribution is Gaussian in time (6.65 psec rms) and according to the measured profiles in the transverse dimension; simulations have been done with 250 pC, 400 pC and 500 pC with 1E6 particles.

The transverse resolution is $0.07 \sigma_t$; all external fields (gun, solenoid and 8 tesla cavities) have rz-symmetry; the distribution is tracked from the cathode to the exit of the last cavity of ACC1;

The injection is calculated with 500 time steps and a longitudinal resolution better than 10 μm by a 2nd order RK-integrator; the rest is calculated with a longitudinal resolution of $0.05 \sigma_z$ by a 5th order RK-integrator;

The gun-phase and solenoid strength are optimized for minimal projected emittance after ACC1; criterion $\varepsilon_{x,n} \varepsilon_{x,n} = \min$
Overview: Simulation of 250 pC from Cathode through ACC1 to Z=14.2 m

C_20180421 (DOE)
\(B_{\text{sol}} = 0.2050 \ T\)
\(\varphi = \varphi_0 - 2.0 \ \text{deg}\)
\(Q = 250 \ \text{pC}\)
\(I_{\text{peak}} = 13.85 \ \text{A}\)
\(\alpha_x = -4.79\)
\(\alpha_y = -2.49\)
\(\beta_x = 47.5 \ \text{m}\)
\(\beta_y = 29.6 \ \text{m}\)
\(\varepsilon_{x,p} = 0.776 \ \mu\text{m}\)
\(\varepsilon_{y,p} = 0.975 \ \mu\text{m}\)
\(\varepsilon_{x,s} = 0.66 \ \mu\text{m}\)
\(\varepsilon_{y,s} = 0.78 \ \mu\text{m}\)

C_20180422 (BSA)
\(B_{\text{sol}} = 0.2050 \ T\)
\(\varphi = \varphi_0 - 2.0 \ \text{deg}\)
\(Q = 250 \ \text{pC}\)
\(I_{\text{peak}} = 13.93 \ \text{A}\)
\(\alpha_x = -5.40\)
\(\alpha_y = -5.61\)
\(\beta_x = 53.1 \ \text{m}\)
\(\beta_y = 54.1 \ \text{m}\)
\(\varepsilon_{x,p} = 0.614 \ \mu\text{m}\)
\(\varepsilon_{y,p} = 0.612 \ \mu\text{m}\)
\(\varepsilon_{x,s} = 0.375 \ \mu\text{m}\)
\(\varepsilon_{y,s} = 0.375 \ \mu\text{m}\)

Measured (DOE):
\(\varepsilon_{x,p} = 0.858 \ \text{mm} \cdot \text{mrad}\)
\(\varepsilon_{y,p} = 0.802 \ \text{mm} \cdot \text{mrad}\)

projected/slice emittance
slice properties at z\(I_{\text{peak}}\)

pencil 1 (sigma = 0.256 mm)
\(B_{\text{sol}} = 0.2050 \ T\)
\(\varphi = \varphi_0 - 2.0 \ \text{deg}\)
\(Q = 250 \ \text{pC}\)
\(I_{\text{peak}} = 13.93 \ \text{A}\)
\(\alpha_x = -5.40\)
\(\alpha_y = -5.61\)
\(\beta_x = 53.1 \ \text{m}\)
\(\beta_y = 54.1 \ \text{m}\)
\(\varepsilon_{x,p} = 0.614 \ \mu\text{m}\)
\(\varepsilon_{y,p} = 0.612 \ \mu\text{m}\)
\(\varepsilon_{x,s} = 0.375 \ \mu\text{m}\)
\(\varepsilon_{y,s} = 0.375 \ \mu\text{m}\)

pencil 2 (sigma = 0.272 mm)
\(B_{\text{sol}} = 0.2050 \ T\)
\(\varphi = \varphi_0 - 2.0 \ \text{deg}\)
\(Q = 250 \ \text{pC}\)
\(I_{\text{peak}} = 14.14 \ \text{A}\)
\(\alpha_x = -4.77\)
\(\alpha_y = -4.69\)
\(\beta_x = 43.0 \ \text{m}\)
\(\beta_y = 42.4 \ \text{m}\)
\(\varepsilon_{x,p} = 0.647 \ \mu\text{m}\)
\(\varepsilon_{y,p} = 0.647 \ \mu\text{m}\)
\(\varepsilon_{x,s} = 0.38 \ \mu\text{m}\)
\(\varepsilon_{y,s} = 0.38 \ \mu\text{m}\)
Overview: Simulation of 400 pC from Cathode through ACC1 to Z=14.2 m

C_20180421 (DOE)
B_{sol} = 0.2055 T \varphi = \varphi_0 - 2.7 \text{ deg}
Q = 397 pC \ I_{\text{peak}} = 19.08 A
\alpha_x = -3.13 \quad \alpha_y = -2.14
\beta_x = 32.5 m \quad \beta_y = 31.2 m
\epsilon_{x,p} = 0.835 \mu m \quad \epsilon_{y,p} = 1.04 \mu m
\epsilon_{x,s} = 0.73 \mu m \quad \epsilon_{y,s} = 0.80 \mu m

C_20180422 (BSA)
B_{sol} = 0.2055 T \varphi = \varphi_0 - 2.9 \text{ deg}
Q = 400 pC \ I_{\text{peak}} = 19.84 A
\alpha_x = -4.04 \quad \alpha_y = -2.45
\beta_x = 38.9 m \quad \beta_y = 32.8 m
\epsilon_{x,p} = 0.753 \mu m \quad \epsilon_{y,p} = 1.02 \mu m
\epsilon_{x,s} = 0.62 \mu m \quad \epsilon_{y,s} = 0.81 \mu m

pencil 1 (sigma = 0.256 mm)
B_{sol} = 0.2055 T \varphi = \varphi_0 - 3.0 \text{ deg}
Q = 400 pC \ I_{\text{peak}} = 19.36 A
\alpha_x = -3.23 \quad \alpha_y = -3.31
\beta_x = 36.4 m \quad \beta_y = 37.5 m
\epsilon_{x,p} = 0.629 \mu m \quad \epsilon_{y,p} = 0.632 \mu m
\epsilon_{x,s} = 0.51 \mu m \quad \epsilon_{y,s} = 0.51 \mu m

pencil 2 (sigma = 0.272 mm)
B_{sol} = 0.2055 T \varphi = \varphi_0 - 2.5 \text{ deg}
Q = 400 pC \ I_{\text{peak}} = 19.88 A
\alpha_x = -2.62 \quad \alpha_y = -2.49
\beta_x = 28.3 m \quad \beta_y = 27.0 m
\epsilon_{x,p} = 0.653 \mu m \quad \epsilon_{y,p} = 0.656 \mu m
\epsilon_{x,s} = 0.50 \mu m \quad \epsilon_{y,s} = 0.50 \mu m
Overview: Simulation of 500 pC from Cathode through ACC1 to Z=14.2 m

C_20180421 (DOE)
- $B_{sol} = 0.2055 \, T$
- $\varphi = \varphi_0 - 4.0 \, \text{deg}$
- $Q = 474 \, \text{pC}$
- $I_{peak} = 21.10 \, \text{A}$
- $\alpha_x = -2.77$
- $\alpha_y = -2.18$
- $\beta_x = 30.0 \, \text{m}$
- $\beta_y = 33.6 \, \text{m}$
- $\varepsilon_{x,p} = 0.866 \, \mu\text{m}$
- $\varepsilon_{y,p} = 1.03 \, \mu\text{m}$
- $\varepsilon_{x,s} = 0.80 \, \mu\text{m}$
- $\varepsilon_{y,s} = 0.80 \, \mu\text{m}$

C_20180422 (BSA)
- $B_{sol} = 0.2055 \, T$
- $\varphi = \varphi_0 - 3.5 \, \text{deg}$
- $Q = 498 \, \text{pC}$
- $I_{peak} = 21.41 \, \text{A}$
- $\alpha_x = -3.53$
- $\alpha_y = -2.58$
- $\beta_x = 36.3 \, \text{m}$
- $\beta_y = 36.7 \, \text{m}$
- $\varepsilon_{x,p} = 0.817 \, \mu\text{m}$
- $\varepsilon_{y,p} = 1.08 \, \mu\text{m}$
- $\varepsilon_{x,s} = 0.69 \, \mu\text{m}$
- $\varepsilon_{y,s} = 0.87 \, \mu\text{m}$

pencil 1 (sigma = 0.256 mm)
- $B_{sol} = 0.2055 \, T$
- $\varphi = \varphi_0 - 3.2 \, \text{deg}$
- $Q = 498 \, \text{pC}$
- $I_{peak} = 21.41 \, \text{A}$
- $\alpha_x = -3.45$
- $\alpha_y = -3.40$
- $\beta_x = 43.9 \, \text{m}$
- $\beta_y = 43.1 \, \text{m}$
- $\varepsilon_{x,p} = 0.749 \, \mu\text{m}$
- $\varepsilon_{y,p} = 0.749 \, \mu\text{m}$
- $\varepsilon_{x,s} = 0.70 \, \mu\text{m}$
- $\varepsilon_{y,s} = 0.70 \, \mu\text{m}$

pencil 2 (sigma = 0.272 mm)
- $B_{sol} = 0.2057 \, T$
- $\varphi = \varphi_0 - 2.8 \, \text{deg}$
- $Q = 500 \, \text{pC}$
- $I_{peak} = 22.52 \, \text{A}$
- $\alpha_x = -2.75$
- $\alpha_y = -2.68$
- $\beta_x = 33.4 \, \text{m}$
- $\beta_y = 32.9 \, \text{m}$
- $\varepsilon_{x,p} = 0.719 \, \mu\text{m}$
- $\varepsilon_{y,p} = 0.724 \, \mu\text{m}$
- $\varepsilon_{x,s} = 0.64 \, \mu\text{m}$
- $\varepsilon_{y,s} = 0.64 \, \mu\text{m}$

Projected/slice emittance
- Slice properties at $z(I_{peak})$

DESY.
A Figure of Merit

\[
L_g = 1.18 \sqrt{\frac{I_A}{I_{\text{peak}}}} \left(\frac{\varepsilon_r \lambda_w}{\lambda_i^{2/3}} \right)^{5/6} \left(1 + \frac{K^2}{2} \right)^{1/3} \frac{K \Gamma_{JJ}}{A} \left(1 + \delta \left(\sigma_r, L \right) \right)
\]

\[
f = \frac{\left(\varepsilon_{\lambda,s} \varepsilon_{\lambda,s} \right)^{5/12}}{\sqrt{I_{\text{peak}}}} \frac{\sqrt{A}}{(\mu\text{m})^{5/6}}
\]

<table>
<thead>
<tr>
<th>Voltage (pC)</th>
<th>File Name</th>
<th>f Value</th>
<th>Z Value (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>C_20180421 (DOE)</td>
<td>0.2038</td>
<td>14.2</td>
</tr>
<tr>
<td></td>
<td>C_20180422 (BSA)</td>
<td>0.1729</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pencil_1</td>
<td>0.1183</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pencil_2</td>
<td>0.1181</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>C_20180421 (DOE)</td>
<td>0.1830</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_20180422 (BSA)</td>
<td>0.1685</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pencil_1</td>
<td>0.1297</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pencil_2</td>
<td>0.1267</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>C_20180421 (DOE)</td>
<td>0.1808</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_20180422 (BSA)</td>
<td>0.1711</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pencil_1</td>
<td>0.1606</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pencil_2</td>
<td>0.1508</td>
<td></td>
</tr>
</tbody>
</table>
Summary/Conclusion: Gun Simulations

simulation for 250pC: pencil emittances < BSA emittances < DOE emittances; this is more pronounced for slice emittances → there is a lot to gain by a flat profile

simulation for 500pC: saturation effects, differences in emittance are less significant

figure of merit based on gain length prefers flat beams with lower charge
Summary/Conclusion

DOE measurements have been done with laser 2 (266 nm); the measured profile is not flat; better results are expected for laser 1 (257 nm);

measured DOE profile is clipped

BSA & DOE beams are not round → it is not possible to optimize both foci simultaneously

simulation for 250pC: pencil emittances < BSA emittances < DOE emittances;
this is more pronounced for slice emittances → there is a lot to gain by a flat profile
simulation for 500pC: saturation effects, differences in emittance are less significant

figure of merit based on gain length prefers flat beams with lower charge

DOE measurements with laser 1 are planned