Y. Chen, E. Gjonaj, H. De Gersem, W.F.O. Müller, T. Weiland

Computational Electromagnetics Laboratory (TEMF) Technische Universität Darmstadt, Germany

Electron Emission Studies Using Enhanced QE Models

DESY-TEMF Collaboration Meeting S2/17 • R 114 • TEMF • Darmstadt 24.06.2016

Contents

- Motivation
- Beam dynamics codes
- Photocathode QE model(s)
- Dynamic charge production in QE limited regime
- Effects in space-charge dominated regime
- Summary and Outlook

Motivation

1. To understand measurement vs. simulation discrepancies for PITZ*

Discrepancies in total bunch charge

2. To improve beam dynamics codes for emission studies

- Conventional PIC/PP models: direct charge production not possible
- Cathode phenomenon due to fields and driving laser pulses not modeled

Beam dynamics codes

Demonstratio

of results

✤ 3D Lienard-Wiechert (LW) PP code ^[1] → Implementation of QE models

- Exact LW field solution for relativistic charged particles
- No geometry (except for cathode)
- Numerically expensive (full particle history stored)

Uniform Motion Average Frame (UMAF) PP code & ASTRA PIC code ^[2]

- Average rest beam frame (ASTRA / PARMELA type)
- No retardation or acceleration
- Numerically more efficient

✤ 3D CST Particle Studio (CST PS) PIC solver ^[3]

- Full-wave codes, full geometry
- Less efficient in 3D: not applicable for long accelerator structures

[1] E. Gjonaj, DESY/TEMF collaboration meeting, Hamburg, 2011.

[2] K. Floettmann, ASTRA particle tracking code [http://www.desy.de/~mpyflo/].

[3] Computer Simulation Technology, www.cst.de.

Dynamic beam generation

Band structure sketch and QE interface between cathode and vacuum

- **QE Models Beam Dynamics** \clubsuit Cathode performance \rightarrow Quantum Efficiency (QE)
 - ♦ QE \rightarrow work function ϕ (energy)
 - Modifications of ϕ
 - ightarrow surface barrier reduction $\Delta \phi_{sch}
 ightarrow$ field effect
 - \rightarrow plasma work function $\Delta \phi_p \rightarrow$ laser effect
 - ★ Cathode field, $E_{cath}(r, t)$ → time and space dependent
 - \rightarrow 3D full relativistic RF + space-charge fields
 - Driving laser pulse, I(r, t)
 - \rightarrow time and space dependent
 - \rightarrow beam halo and electron-hole plasma
 - Dynamic beam generation

(Semi-) Analytical QE models

Based on Spicer's 3-step theory^[4]

- 1. Photoexcitation
- 2. Transport to surface
- 3. Escape to vacuum
- \rightarrow simple formulas for QE

Spicer's semiconductor model

Given laser intensity $I(l, h\nu)$, *l*: penetration depth,

✤ QE models

- For metals: Fowler-Du Bridge model^[5]
- For semiconductors: Spicer's and Jensen's^[4,6]

$$QE_{spicer} = \frac{B}{1 + g(h\nu - \phi)^{-m}}$$

B → emission probability, form factor g → absorption factor Exponent index, m = 1.5 (experimental) Material work function, ϕ = Eg + Ea

(Semi-) Analytical QE models

* Kevin L. Jensen's semiconductor model [6]

$$QE = \frac{1}{2}(1 - R_w) \left\{ \frac{8}{y^4} \int_1^y x^3 \left(\int_{\frac{1}{x}}^1 sf_\lambda(s, E_a x^2) ds \right) dx \right\} \sqrt{1 + \frac{\Delta E}{E_a}}$$

absorption weighted scattering fraction escape probability

For small ΔE (near threshold), a simplified form:

$$QE_{Jensen} = \frac{1 - R_w}{2} \left[\frac{1}{\left(p_0 + 1 \right) \left(1 + \frac{E_a}{\Delta E} \right)^2} \right] \sqrt{1 + \frac{\Delta E}{E_a}}$$

 $\Delta E = h\nu - (E_g + E_a)$ E_g : band gap, E_a : electron affinity R_w : reflection factor p_0 : form factor, ratio of penetration depth to distance between two events

For Cs₂Te photocathodes $E_g = 3.3 \text{ eV}$ $E_a = 0.2 \text{ eV}$

$$h\nu = 4.81 \text{ eV}$$
 at 257 nm

$$QE = \frac{B}{1 + g(h\nu - \phi)^{-1.5}} \text{ (Spicer's)}$$

$$QE = \frac{1}{2}(1 - R_w) \left[\frac{1}{(p_0 + 1)\left(1 + \frac{E_a}{\Delta E}\right)^2} \right] \sqrt{1 + \frac{\Delta E}{E_a}} \text{ (Jensen's)}$$

$$QE = \eta (h\nu - \phi)^2 \text{ (Fowler-Dubridge model)}$$

QE forms:

1> Power law different

2> Interpretation of modeling theory different

Performances in charge production

 \rightarrow see simulation results

TECHNISCHE UNIVERSITÄT DARMSTADT

QE modifications

- Modified cathode work function

$$\phi = E_g + E_a - \Delta \phi_{sch} + \Delta \phi_p$$
$$\Delta E = h\nu - \phi$$

- Surface potential reduction (Schottky)

$$\Delta\phi_{sch}(r,t) = \sqrt{\frac{e^3}{4\pi\varepsilon_0}}E_{cath}(r,t)$$

- Relativistic full cathode field on-the-fly

$$E_{cath}(r,t) = E_{rf}(r,t) + E_{spch}(r,t)$$

- Plasma work function (experimental)

 $\Delta \phi_p = \alpha * [I(r,t)]^{1/2}$

 $I \rightarrow$ laser intensity, $\alpha \rightarrow$ material property constant ^[7]

- Edge-halo in transverse laser profile ^[8] $W_l(r, R_c, \sigma) \sim \exp\left(\frac{R_c^2 - r^2}{2 * \sigma^2}\right)$ - Linear modification of initial energy (E_{p1}=4.05eV for Cs2Te)

 $E_{kin} = E_{p1} - \phi$

Total bunch charge produced at the cathode

$$\Delta E = h\nu - \left(E_g + E_a - \sqrt{\frac{e^3}{4\pi\varepsilon_0}} \left[E_{rf}(r,t) + E_{spch}(r,t)\right] + \alpha \left(I(r,t)\right)^{1/2}\right)$$

$$QE(r,t) = \frac{1}{A\left(1 + \frac{E_a}{\Delta E}\right)^2} \sqrt{1 + \frac{\Delta E}{E_a}} \qquad \text{QE varies with time and space}$$

$$\Rightarrow \text{Cathode characterization needed}$$

$$Q(r,t) = \int_0^t \iint_S e^{\frac{P_{laser}(r,\tau)W_l(r,R_c,\sigma)}{h\nu}} QE(r,\tau)d^2r \, d\tau \qquad \text{Beam generation using full} dynamic fields}$$

✤ Cathode form factor determination

- cathode characterization for the PITZ gun^[9,10]

- 1. Cathode form factors consistent for same cathode (models applicable)
- 2. Characterizations different for different QE models

Simulations in SPCH dominated regime

- 1. Comparisons with measurements
 - For a fresh cathode (QE=~8.5%) and a worn cathode (QE=~0.6%)
 - Experimental conditions: Prf=1.5MW, BSA=1.8mm, temporal profile: short Gaussian 1.5ps rms
- 2. Comparisons between enhanced QE models
 - Fowler-Du Bridge model (metals)
 - Spicer's model (semi)
 - Jensen's model (semi)
- 3. Comparisons between numerical approaches
 - UMAF PP
 - LW PP
 - CST PS PIC
 - ASTRA PIC

- comparisons between numerical approaches

Simulations in SPCH dominated regime

24-06-2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 13/19

TECHNISCHE UNIVERSITÄT DARMSTADT

Simulations in SPCH dominated regime

- comparisons between enhanced QE models

Spicer's vs. Jensen's

- \rightarrow both for semiconductors and threshold emission
- \rightarrow using same code for implementation
- \rightarrow good agreements, blue and green (left figure)

F-DB vs. Spicer's

- \rightarrow Cathode characterizations different
- \rightarrow Using different form factors, measurements reproduced in QE regime
- \rightarrow In SPCH regime
 - \rightarrow F-DB gives slightly higher charges for GS bunches
 - \rightarrow Performances similar for FT bunches (right figure)

Effects in SPCH dominated regime

-"edge halo effect"

 Slight increasing behavior in SPCH regime → induced edge halo in the transverse laser distribution

Laser spot on virtual cathode

 Beam-halo model of PITZ^[8] used for implementation (Rc~0.9 mm, S_g~0.25) with LW approach and Spicer's model

Effects in SPCH dominated regime

- -"plasma work function"
- Laser-induced plasma work function**
 - a. Work function increased by high laser intensity induced plasma
 - b. $\Delta \phi_p \sim \alpha * [I(r, t)]^{1/2}$

 - $I \rightarrow$ laser intensity, $\alpha \rightarrow$ material property constant

Qtot (pC)

TECHNISCHE UNIVERSITÄT DARMSTADT

Summary and Outlook

1. Incorporation of QE models with beam dynamics codes for emission modeling

2. Current status

- Simulation tool for emission studies
 - Multiple particle field computation approaches developed
 - Various emission models implemented
 - Relevant field and laser effects modeled
- Emission studies performed for PITZ using proposed method
 - QE models enhances emission
 - Full EM implementation enhances emission

3. Remaining problem

Discrepancy in the transition area (Q w.r.t. laser energy)

4. Outlook and Discussion

- Edge-halo effect combined with plasma work function (?)
- More comparisons with measurements for validation

Thank you for your attention!

