
SASE optimization with OCELOT

Sergey Tomin

other co-workers: I. Agapov, G. Geloni, I. Zagorodnov

• Motivation

• How it works

• Recent results of empirical tuning at FLASH (model-free

optimization)

• OCELOT features in beam dynamics simulations

• Extending of empirical tuning by model-depending

optimization

• Summary

Outline

The major motivation is the benefit of

improving facility availability and

performance through more effective and

faster tuning

Motivation

How it works

Optimizer

corr. 1 – Nc

quad. 1 – Nq

sext. 1 – Ns

bend. 1 – Nb

Cavit. 1 - Ncv

Undul.

SASE det.

BLM

Typical tuning sequence for

FLASH:

 V14, V7, H10, H12, H3, V3

 Q13SMATCH, Q14SMATCH,

Q15SMATCH

 FODO QUADS

 intra-undulator orb. correctors

 RF phases and Voltages

 Orbit correctors and FODO

quads have largest impact

All steps programmed to avoid electron beam losses in the

undulators above threshold (solutions above 0.7 alarm level

highly penalized and above alarm level forbidden). .

How it works

dp = FLASH1DeviceProperties()

mi = FLASH1MachineInterface()

#dp = LCLSDeviceProperties()

#mi = LCLSMachineInterface()

opt = Optimizer(TestInterface(), mi, dp)

opt.log_file = 'test.log'

opt.timeout = 1.2

seq1 = [Action(func=opt.max_sase, args=[['H10SMATCH','H12SMATCH'], 'simplex'])]

seq2 = [Action(func=opt.max_sase, args=[['V14SMATCH','V7SMATCH'], 'simplex'])]

seq3 = [Action(func=opt.max_sase, args=[['Q13SMATCH','Q15SMATCH'], 'simplex'])]

opt.eval(seq1)

#opt.eval(seq1 + seq2 + seq3 + seq4 + seq5)

 Python script

initialization machine interface

between Ocelot and Control System

Optimization

method Device ID

• Automatic SASE tuning works in a few minutes if the machine

is in initially stable condition

• Demonstrated at several wavelengths (17nm, 13.5nm, 10.4

nm, 7 nm) with different bunch filling at about 0.3 nC charge

Experience of model-free optimization at FLASH

Last shift results: SASE optimization by correctors

𝜆 = 10.4 𝑛𝑚

 For optimization is necessary initial SASE signal

 To check repeatability of the optimization techniques we repeated

the same experiment after resetting correctors to initial values

Last shift results: SASE optimization by correctors

𝜆 = 10.4 𝑛𝑚

 after resetting correctors

Last shift results: SASE optimization by correctors

𝜆 = 10.4 𝑛𝑚

 … and after correctors cycling

Last shift results: SASE optimization by correctors

𝜆 = 10.4 𝑛𝑚

 Extended set of correctors used

 All changes made by the OCELOT optimizer logged (without online

processing)

Last shift results: SASE optimization by correctors

𝜆 = 13.4 𝑛𝑚

 From previous experiments we found most effective correctors and

repeated optimization process using them for new machine settings

𝜆 = 13.4 𝑛𝑚

H3UND4: I = 0.5 A

not used, but noisy

Resume

 The empirical tuning works and was demonstrated at FLASH at

several wavelengths (17nm, 13.5nm, 10.4 nm, 7 nm) with different

bunch filling at about 0.3 nC charge

 The method was demonstrated at SLAC (mainly uses quadrupoles

in the linac. They call this tuning procedure “Ocelot optimization“)

 Stability of the machine operation is necessary. From our

experience in ~10-15% of cases SASE fluctuations were too large

and the method does not work.

 A universally effective sequence of operations for fast SASE tuning

does not exist (it is necessary to control the optimization from

operator’s side).

 The initial SASE signal is necessary

 The optimization is model-free.

Ocelot overview

 OCELOT is a multiphysics simulation toolkit

 Twiss parameters calculation (CPBD module)

 Particle tracking module (CPBD module)

 Matching module (CPBD module)

 Orbit correction module (was implemented for Siberia-2 Light Source at

2013 see Tomin et al., proc. IPAC 2013) (CPBD module)

 Native module for spontaneous radiation calculation

 Native module for photon ray tracing

 SASE calculations using GENESIS

 Python based and open source https://github.com/iagapov/ocelot

 OCELOT was designed with on-line capability in mind (see Agapov et

al., NIM A. 768 2014)

 Developed infrastructure for switching between flight simulator/controls

mode with binding to DOOCS and EPICS. Already used for on-line

beam control at Siberia-2 and for SASE tuning at FLASH and LCLS.

https://github.com/iagapov/ocelot
https://github.com/iagapov/ocelot

Developing Charge Particle Beam Dynamics (CPBD)

module in OCELOT.

FLASH, Q = 1 nC

 added second order matrices.

 added space charge solver (@ M.Dohlus and I.Zagorodnov)

 CSR solver in progress (@ M.Dohlus)

𝛽
𝑦
,𝑚

𝑚

Cross-checking with Elegant:

Tracking including second order matrices

𝛽𝑥 cross-checking

𝛽𝑦 cross-checking

Cross-checking with Elegant:

Current profile at the Start point (FLASH)

Cross-checking with Elegant:

Current profile at the End point

 Using second order matrices

Cross-checking with Elegant:

Beam distribution in space ∆𝑙 − ∆𝑝
𝑝

at the Start point of FLASH

Cross-checking with Elegant:

Beam distribution in space ∆𝑙 − ∆𝑝
𝑝

at the End point of FLASH

Future plans of development CPBD module

 Completing CSR solver in cooperation with DESY

 Add wakefield effects in cooperation with DESY

 Further development and testing of symplectic tracking

 Further development of matching module

Extending of empirical tuning by model-depending

optimization

 Creation of realistic model of accelerator

 Visualization of changes during Ocelot optimization.

 Orbit steering

 Algorithm of strategy selection

Visualization of changes during Ocelot

optimization
X

/Y
,

m

Visualization of changes during Ocelot

optimization
X

/Y
,

m

S, m

Using converter tpi2k() (@Mathias Vogt) corrector kicks

Kicks fed into ocelot particle tracking relative changes in beam trajectory

 It can give idea that problem was in horizontal direction

Orbit steering

 Restoring orbit from previous successful optimization to get initial SASE signal SASE

optimization.

 Ideal lattice

Orbit steering

 Changing orbit in some point of the lattice to maximize SASE level.

Algorithm of strategy selection

Optimizer

corr. 1 – Nc

quad. 1 – Nq

sext. 1 – Ns

bend. 1 – Nb

Cavit. 1 - Ncv

Undul.

SASE det.

BLM

Algorithm of strategy selection

Data Base of

successful

optimizations

algorithm of

strategy selection

(statistical analysis)

Optimizer

corr. 1 – Nc

quad. 1 – Nq

sext. 1 – Ns

bend. 1 – Nb

Cavit. 1 - Ncv

Undul.

SASE det.

BLM

 Effectiveness of devices (cors, quads)

 Effectiveness of sequences

 Orbits with maximum SASE signal

Algorithm of strategy selection

Data Base of

successful

optimizations

algorithm of

strategy selection

(statistical analysis)

Optimizer

corr. 1 – Nc

quad. 1 – Nq

sext. 1 – Ns

bend. 1 – Nb

Cavit. 1 - Ncv

Undul.

SASE det.

BLM

Online module

(orbit steering)

BPM 1 – Nb

Online model of accelerator ?

Used last optics file (MAD8 and Elegant)

Taken the amplitudes and phases of cavities from control system by PyDoocs

Taken quadrupoles currents from the control system and using tpi2k we got the strengths

And we got these beta functions…

Online model of accelerator ?

Used last optics file (MAD8 and Elegant)

Taken the amplitudes and phases of cavities from control system by PyDoocs

Taken quadrupoles currents from the control system and using tpi2k we got the strengths

And we got these beta functions… after matching

Reading real orbit and fitting beam trajectory

Horizontal plane

Reading real orbit and fitting beam trajectory

Vertical plane

Reading real orbit and fitting beam trajectory

 Creation of realistic model is not simple task.

Quadrupole misalignments

m

• On-line control python tools have been developed

• Demonstrated automatic SASE tuning at FLASH and LCLS

• Proposal for further FLASH beamtime to study more advanced

tuning methods has been approved and further developments are

ongoing

• Implementation of GUI for FLASH/XFEL in progress (~02.2016)

• Planning of further steps wrt. XFEL.EU is underway. The first step

of optimization tool implementation can be beam transmission

tuning during commissioning.

• R&D into more complex tuning methods are needed.

• Even the simplest empirical tuning method promises significant

advantage for facility availability.

Summary

Thank you for your attention

