Transverse Beam Profile after BC3 and in Undulator
(for Flash with 3rd harmonic rf)

BC3 \rightarrow collimator

1. Observations for the 1nC case (see 30th Nov.)

2. Slice Analysis – “Methods”

3. Slice Emittance – “good and bad particles”

Undulator

4. SC Effects

5. Transverse Profile (without SC Effects)

both

6. Summary
6. Summary

BC3 → collimator

- rms beam properties underestimate real particle density
- slice emittance is better than expected
- therefore: SC effects are stronger
- to be done: optics with SC effects

Undulator

- rms beam properties underestimate real particle density
- SC effects at 1GeV nearly negligible
- peak current density larger than for Gaussian beam
- pseudo energy spread (from emittance) larger than real energy spread
- pseudo energy spread than for Gaussian beam
1. Observations for the 1nC case
(see meeting 30th Nov.)

Transverse Dynamics

![Diagram showing transverse dynamics with various beta functions and current levels.]
Transverse Dynamics
slice emittance

BC3 → collimator

undulator-start
\(\gamma \varepsilon_{x/y}^{(0.8)} = 0.5 \ldots 1.5 \mu m \)

design optic (2+)
2. Slice Analysis – “Methods”

- BC3 → collimator
- exit BC3
- entrance collimator

![Graphs showing horizontal and vertical beta profiles](image)

- design optic (2+)
- slice model

Selected slice

- Astra, full bunch
- centroids extracted!

![Graph showing centroids extracted](image)
slice model
(see meeting 28th Sept.)

run Astra with 7 particles without self effects (map many steps)

\[X_i^{(a)} = \left(\begin{array}{c} x_i^{(a)} - x_0^{(a)} \\ x_i^{(a)} - x_0^{(a)} \\ \vdots \end{array} \right), \quad i = 1, 2, \ldots, 6 \]

calculate linear transport matrices

\[T^{(b\leftarrow a)} = (X_1^{(a)} X_2^{(a)} \cdots X_6^{(a)})^{-1} (X_1^{(b)} X_2^{(b)} \cdots X_6^{(b)}) \]

select slice particles from initial distribution \(X_p \)

\[\{X_p^{(\text{start})}\} = \text{slice} \{X_p^{(\text{start})}\} \]

track from a to b with self effect

\[\{X_p^{(a)}\} = \text{slice} \left\{ 0.5\delta X_p^{(a)} + T^{(b\leftarrow a)} \left[0.5\delta X_p^{(a)} + X_p^{(a)} \right] \right\} \]

transverse self forces at “a” and “b”
slice model comparison with Astra

design optic (2+)

slice model (rz)

selected slice

Astra (rz), slice
slice model
comparison rz, xyz

f.i. exit BC3

BC3 → collimator

\[q(r) \]
\[E_r(r) \]
\[E_x(x,0) \]
\[E_y(0,y) \]
comparison slice model:

rz ↔ xyz ↔ design

red = rz (50 lines in r)

blue = xyz (25 lines in x,y)

black = design

→ rz approach and slice model are roughly ok
comparison slice model:
rz ↔ xyz ↔ design
red = rz (50 lines in r)
blue = xyz (40 lines in x,y)
black = design
3. Slice Emittance

Transverse Dynamics

slice emittance

slice model
“slice” = 28um .. 32um

design optic (2+)

solid = rz model
dashed = xyz model
cross coupling?

“slice” = 28um .. 32um

xx – correlation

yy – correlation

xy – correlation

spatial correlation

momentum correlation

spatial-momentum corr.

no xy correlation!
“good” and “bad” particles

“slice” = 28um .. 32um

xy space (+- 1mm)

movie 1

xy space (+- 1mm)

movie 2

xx’ and yy’ space

movie 3
slice model (xyz)

“slice” = 28um .. 32um

BC3 → collimator

4087 “red” particles

1012 “blue” particles
slice model (xyz)

“slice” = 28um .. 32um

[Diagram showing particle beam path through BC3 and collimator with graphs of energy, beta functions, and slice models]
4. SC Effects in Undulator

no match at all!

slice = -2um .. +2um

strong effect due to initial mismatch compared to that:
weak effect due to space charge
match = -10um .. -6um
slice = -10um .. -6um

perfect initial match:
$\Delta \beta$ at end < 0.3m
weak difference between r and xy model
match = -10um .. -6um
slice = -10um .. -6um

perfect initial match:
$\Delta \beta$ at end < 0.1m
difference between r and xy model very small

= gaussian distribution with same rms properties as initial distribution (slice)
match = -20um .. +7um
slice = -2um .. +2um

initial mismatch: $\Delta \beta(z_0) \approx 0.6m$
$\Delta \beta$ along undulator $\approx 0.6m$
weak difference between r and xy model
match = -20um .. +7um
slice = -2um .. +2um

initial mismatch: $\Delta \beta(z_0) \approx 0.6m$
$\Delta \beta$ along undulator $\approx 0.6m$
very weak difference between r and xy model
5. Transverse Profile (without SC Effects)

for matching:

bunch = 1 .. 200000
core = 68510 .. 111196
slice = 95000 .. 105000
Gaussian replica, slice match

\(n_a = 95000 \quad n_b = 105000 \quad N = 200000 \)

slice:

- beta functions (real & design)
- inverse size of rms ellipse
- particle density in rms ellipses
- particles in rms ellipse
slice:

- design x,y
- real x,y

bunch match

- na = 95000
- nb = 105000
- n1 = 68510
- n2 = 111196
- N = 200000

- beta functions (real & design)
- inverse size of rms ellipse
- particle density in rms ellipses
- particles in rms ellipse
transverse profile – core match – averaged along undulator

tracked particles

Gauss replica

red: \(\text{den}(x,0) \) blue: \(\text{den}(0,y) \) black: gaussian, \(\text{den}(i) \)
tracked particles

Gauss replica

transverse profile – slice match – averaged along undulator

red: \text{den}(x,0) \hspace{0.5cm} \text{blue: den}(0,y) \hspace{0.5cm} \text{black: gaussian, den}(r)
effective energy spread

\[\lambda_{ph} = \frac{\lambda_u}{(\gamma_0 + \delta\gamma)^2} \left(1 + \frac{K^2}{2} \right) + \frac{\lambda_u}{2} \left(x'^2 + y'^2 \right) \]

\[\left(\frac{\delta\gamma}{\gamma_0} \right)_{eff} = \frac{\delta\gamma}{\gamma_0} - \frac{\lambda_u}{4\lambda_{ph}} \left(x'^2 + y'^2 \right) \]

pseudo spread: \[\text{rms}\left\{ \left(\frac{\delta\gamma_{pseu}}{\gamma_0} \right) \right\} = \frac{\lambda_u}{4\lambda_{ph}} \text{rms}\{ x'^2 + y'^2 \} \]

Gaussian

\[\text{rms}\left\{ \left(\frac{\delta\gamma}{\gamma_0} \right)_{eff} \right\} = \sqrt{\text{rms}\left\{ \left(\frac{\delta\gamma}{\gamma_0} \right) \right\}^2 + \left(\frac{\lambda_u}{4\lambda_{ph}} \left(\varepsilon_x \gamma_x + \varepsilon_y \gamma_y \right) \right)^2} \approx \sqrt{\text{rms}\left\{ \left(\frac{\delta\gamma}{\gamma_0} \right) \right\}^2 + \left(\frac{\lambda_u}{2\lambda_{ph}} \frac{\varepsilon}{\text{min}\{\beta\}} \right)^2} \]
bunch match

\[\text{rms} \{ \delta E_{\text{pseu}} \} = 984 \text{ keV} \]

core match

\[\text{rms} \{ \delta E_{\text{pseu}} \} = 799 \text{ keV} \]

\[1020 | 578 \text{ keV} \]

slice match

Gaussian bunch

\[\text{rms} \{ \delta E_{\text{pseu}} \} = 459 \text{ keV} \]

\[E_0 \frac{\lambda_{\text{in}}}{2\lambda_{\text{ph}}} \frac{\varepsilon}{\min \{ \beta \}} = 437 \text{ keV} \]

\[\varepsilon_n = 1.1 \mu \text{m} \]

\[\min \{ \beta \} = 2.7 \text{ m} \]
6. Summary

BC3 → collimator

rms beam properties underestimate real particle density
slice emittance is better than expected
therefore: SC effects are stronger
to be done: optics with SC effects

Undulator

rms beam properties underestimate real particle density
SC effects at 1GeV nearly negligible
peak current density larger than for Gaussian beam
pseudo energy spread (from emittance) larger than real energy spread
pseudo energy spread than for Gaussian beam