Recent Results on J/ ψ , ψ' and ψ'' Decays from BESII

Xiaoyan SHEN

(Representing BES Collaboration) Institute of High Energy Physics, Beijing shenxy@ihep.ac.cn

Oct. 17 - 20, 2007, QWG5, DESY, Germany

Outline

- Results on Y(2175)
- Results on O⁺⁺ meson
- Results on KA mass threshold structure $N_X(1610)$
- Measurements of ψ' radiative decays
- Measurements of ψ' to $B\overline{B}$ etc.
- ψ" non-DD decays
- Summary

Beijing Electron Positron Collider (BEPC)

BESI started running in 1989 BESII started in 1997 BESIII will start in 2008

BESII Detector

World J/ ψ and ψ (2S) Samples ($\times 10^{6}$)

Observation of Y(2175) in $J/\psi \rightarrow \eta \phi f_0(980)$ at BESII

Observation of a new 1⁻⁻ resonance Y(2175) at BaBar

A structure at 2175MeV was observed in

 e⁺e⁻ → γ_{ISR} φf₀(980),
 e⁺e⁻ → γ_{ISR} K⁺K⁻f₀(980)
 initial state radiation processes

 $M = 2175 \pm 10 \pm 15 \text{ MeV}$ $\Gamma = 58 \pm 16 \pm 20 \text{ MeV}$

FIG. 6 (color online). The $e^+e^- \rightarrow \phi(1020)f_0(980)$ cross section, with about 10% of the $\phi \pi \pi$ contribution, obtained via ISR in the $K^+K^-\pi^+\pi^-$ (circles) and $K^+K^-\pi^0\pi^0$ (squares) final states. The curves represent results of the fits described in the text.

Phys. Rev. D 74 (2006) 091103(R)

$J/\psi \rightarrow \eta \phi f_0$ (980)

A peak around 2175 MeV/c² is observed in $J/\psi \rightarrow \eta \phi f_0(980)$

M²(η f₀(980)) vs. M²(η φ) (Dalitz plot)

Fit with one resonance

 $B(J/\psi \to \eta Y(2175)B(Y(2175) \to \varphi f_0(980))B(f_0(980) \to \pi^+\pi^-) =$ $(3.23 \pm 0.75(stat) \pm 0.73(syst)) \times 10^{-4}$

A resonance at 2175 MeV/c² is observed with significance ~ 5σ in $\phi f_0(980)$ mass spectrum.

	Mass (GeV/c ²)		
BES	$2.186 \pm 0.010 \pm 0.006$	$0.065 \pm 0.023 \pm 0.017$	
BABAR	$2.175 \pm 0.010 \pm 0.015$	$0.058 \pm 0.016 \pm 0.020$	

> Branching ratio obtained:

B(J/ ψ → η Y(2175)B(Y(2175) → φ f₀(980))B(f₀(980) → $\pi^{+}\pi^{-})$ = (3.23±0.75(*stat*)±0.73(*syst*))×10⁻⁴

What is Y(2175)?

Some theoretical interpretations:

- A conventional $s\overline{s}$ state?
- An $S\overline{S}$ analog of Y(4260) ($S\overline{S}g$)?
- An $S\overline{S}S\overline{S}$ 4-quark state?

More experimental information needed.

Results on 0⁺⁺ mesons

Lattice QCD predicts the 0⁺⁺ scalar glueball mass in the range 1.5 - 1.7 GeV.

 $f_0(1500)$ and $f_0(1710)$ are good candidates.

PWA of J/ $\psi \rightarrow \gamma \pi^+ \pi^-$ and $\gamma \pi^0 \pi^0$ at **BESII**

Phys. Lett. B 642 (2006) 441

PWA of J/ $\psi \rightarrow \gamma \pi^{+} \pi^{-}$ and $\gamma \pi^{0} \pi^{0}$

PWA components:

- Lower O^{++} : O^{++} is strongly preferred over 2^{++} $M = (1466 \pm 6 \pm 16) \text{ MeV}$ $\Gamma = (108^{+14}_{-11} \pm 21) \text{ MeV}$
- f₀(1370) cannot be excluded.
- Higher 0^{++} : $f_0(1710)$ or $f_0(1790)$ or both?

 $M = (1765_{-3}^{+4} \pm 11) \text{ MeV}$ $\Gamma = (145 \pm 8 \pm 23) \text{ MeV}$

$J/\psi \rightarrow \gamma \pi^+ \pi^-$	-				
	$J/\psi \to \gamma X, \ X \to \pi^+\pi^-$				
	Μ	ass (MeV)	Γ (MeV)	$\mathcal{B}(imes 10^{-4})$	
$f_2(127)$	70) 1	$262^{+1}_{-2} \pm 7$	$175^{+6}_{-4} \pm 9$	$9.14 \pm 0.07 \pm 1.01$	
$f_0(150)$	00) 14	$66 \pm 6 \pm 20$	$108^{+14}_{-11} \pm 21$	$0.67 \pm 0.02 \pm 0.28$	
$f_0(17)$	10) 17	$765^{+4}_{-3} \pm 12$	$145\pm8\pm69$	$2.64 \pm 0.04 \pm 0.71$	
$J/\psi \rightarrow \gamma \pi \pi$		J/	$\psi \to \gamma X, X$	$\rightarrow \pi^0 \pi^0$	
		Mass (MeV)	Γ (MeV)	$\mathcal{B}~(imes 10^{-4})$	
$f_2($	(1270)	same as charg	ged channel	$4.00 \pm 0.09 \pm 0.58$	
f_0 ((1500)	same as charg	ged channel	$0.34 \pm 0.03 \pm 0.15$	
$f_0($	(1710)	same as charg	ged channel	$1.33 \pm 0.05 \pm 0.88$	

Phys. Lett. B 642 (2006) 441

About $f_0(1500)$ and $f_0(1710)$

- It is first clearly observed in J/ψ radiative decays.
- Its production rate in J/ψ radiative decays:

 $BR(J/\psi \to \gamma f_0(1500)) \bullet BR(f_0(1500) \to \pi\pi) \sim 1 \times 10^{-4}$ (BESII)

$$BR(f_0(1500) \to \pi\pi) \sim 35\%$$

$$(PDG)$$

 The production rate of f₀(1500) in J/ψ radiative decays is lower than that of f₀(1710):

$$BR(J/\psi \to \mathscr{f}_0(1500)) \sim 3 \times 10^{-4}$$

$$BR(J/\psi \to \mathscr{f}_0(1710)) > 9 \times 10^{-4}$$
$$(PDG)$$

It may indicate: f₀(1710) has stronger coupling to gluons than f₀(1500) → which one contains more glueball content?

New results on baryons at BESII

Observation of a strong enhancement near the threshold of $K^-\overline{\Lambda}$ mass spectrum at BES II

• **Best PWA fit:** $(J^{P}=1/2^{-1})$ is favored)

 $m = 1625^{+5+13}_{-7-23}MeV$ $\Gamma = 43^{+10+28}_{-7-11}MeV$

 $Br(J/\psi \to pNx) \times Br(Nx \to K\Lambda) = 9.14^{+1.30+4.25}_{-1.25-8.28} \times 10^{-5}$

• Fitted as N(1535) (becomes worse by about $5 \sigma (\Delta \chi^2 = 28 \text{ with } d.o.f.=2)$).

 $Br(J/\psi \rightarrow pN(1535)) \times Br(N(1535) \rightarrow K\Lambda) = 4.26^{+0.15+4.22}_{-0.14-1.70} \times 10^{-4}$

BASIL Dreliminary Big Br.

Comparison between data and PWA fit projections

N_x* is N(1535)?

From BESII measurements:

 $BR(J/\psi \to pN(1535)) \bullet BR(N(1535) \to p\pi) \sim (1 \sim 2) \times 10^{-4}$

 $BR(J/\psi \rightarrow pN(1535)) \bullet BR(N(1535) \rightarrow K\Lambda) \sim 4 \times 10^{-4}$

If N_x^* is N(1535), its coupling to KA is much stronger than to $p\pi$.

Then N(1535) would have very large ssbar component (a 5-quark system).

Observation of ψ ' radiative decays

- Expected 1% BR, but only 0.05% observed.
- Potential channels for hadron spectroscopy study, including search for nonqqbar states, provided statistics is enough (BESIII?).
- ~ 0.1% more observed in this analysis.

Mode	BR (×10 ⁻⁵)		
	[m<2.9 GeV/c ²]		
γ pp-bar	$2.9 \pm 0.4 \pm 0.4$		
γη'	$12.6 \pm 2.9 \pm 1.5$		
γ 2(π⁺π⁻)	$39.6 \pm 2.8 \pm 5.0$		
γ K _S K⁺π⁻+c.c.	$25.6 \pm 3.6 \pm 3.6$		
γ π⁺π⁻ Κ⁺Κ ⁻	$19.1 \pm 2.7 \pm 4.3$		
γ π⁺π ⁻ppbar	$2.8 \pm 1.2 \pm 0.7$		
γ 2(K⁺K⁻)	< 4.0		
γ 3(π⁺π⁻)	< 17		
γ 2(π ⁺ π ⁻) K ⁺ K ⁻	< 22		

ψ'**→BBbar**

PLB648, 149 (2007)

- First measurement by BESI, re-measure BR with a larger ψ' data sample. SU(3) symmetry observed.
- "12% rule" tested.

$\psi'(J/\psi) \rightarrow \Lambda \Lambda + \pi^0/\eta$ arXiv: 0707.1127 [hep-ex] To appear in PRD

BESI/DMII: B(ΛΛπ⁰)~2x10⁻⁴: Isospin-violation!

ψ(3770) non-DD decays

• $\psi(3770)$ decays most copiously into DD.

- ψ(3770) is a mixture of the 1³D₁ and 2³S₁, other ψ(2S)-like decays for ψ(3770) are expected. (mixing angle 12±2°).
- Many theoretical calculations estimate the partial width for $\psi(3770) \rightarrow \pi^+\pi^- J/\psi$. (Lipkin, Yan, Lane, Kuang, Rosner)
- BES observed $\psi(3770) \rightarrow \pi^{+}\pi^{-} J/\psi$ decays. Further confirmed by CLEO-c.

 $BF(\psi(3770) \rightarrow non - D\overline{D}) = (14.5 \pm 1.7 \pm 5.8)\%$

PLB641(2006)145

Line shape of the cross sections for hadron and DD-bar production

and the DD-bar production cross sections

Branching fractions

 $BF(\psi(3770) \to D^{0}\overline{D}^{0}) = (46.7 \pm 4.7 \pm 2.3)\%$ $BF(\psi(3770) \to D^{+}D^{-}) = (36.9 \pm 3.7 \pm 3.1)\%$ $BF(\psi(3770) \to D\overline{D}) = (83.6 \pm 7.3 \pm 4.7)\%$ $BF(\psi(3770) \to non - D\overline{D}) = (16.4 \pm 7.3 \pm 4.7)\%$

Summary

- Y(2175) at BESII
- Light 0^{++} mesons are studied in J/ψ radiative decays
- K threshold enhancement is observed in J/ $\psi \rightarrow p K \Lambda$
- The measurements of ψ' decays are presented.
- ψ " non-DDbar decays
- We are expecting more new results at BESIII.

Backup Slides

Fit with one resonance

BG is represented by a 3rd-order polynomial

 $B(J/\psi \rightarrow \eta Y(2175)B(Y(2175) \rightarrow \varphi f_0(980))B(f_0(980) \rightarrow \pi^+\pi^-) =$ $(3.79 \pm 0.87(stat)) \times 10^{-4}$

Fit with two resonances

- BG shape is fixed to sideband BG
- the mass and width of the second peak are fixed to those of from BaBar.

 $B(J/\psi \to \eta Y(2175)B(Y(2175) \to \varphi f_0(980))B(f_0(980) \to \pi^+\pi^-) =$ $(2.92 \pm 0.87(stat)) \times 10^{-4}$

Fit with two resonances

- BG is represented by a 3rd-order polynomial
- the mass and width of the second peak

 $B(J/\psi \to \eta Y(2175)B(Y(2175) \to \varphi f_0(980))B(f_0(980) \to \pi^+\pi^-) =$ $(4.29 \pm 1.30(stat)) \times 10^{-4}$