

Hints of a 4-quark Spectroscopy

AD Polosa, INFN Roma

Hints of a 4-quark Spectroscopy

AD Polosa, INFN Roma

Why diquarks?

diquarks are bound states in color anti-triplet channel:
 3* (lattice, group-theory arguments and x->1 DIS)

- a diquark-anti-diquark (dq-adq) state is bound by color forces
- Solution Spin O (the `good` ones) diquarks are 3_{f} . The spin 1 are less bound (Sakharov Λ - Σ puzzle) :: 6_{f} .

The exotic spectrum is reduced because 3x3* < 3x3x3*x3* :: crypto-exotic light scalar hadrons</p>

$$[qq]_{ia}^{\text{good}} = \epsilon_{ijk}^{(\text{col})} \epsilon_{abc}^{(\text{flav})} (-i\sigma_2)_{rt} q_r^{jb} q_t^{kc}$$

The inverted mass spectrum

Scalars from Theory

(1) Caprini, Colangelo, Leutwyler PRL 2005 -- the sigma
 (2) Descotes-Genon, Moussallam EPJC 2006 -- the kappa
 Partial wave S-matrix elements are real-analytic

 $S^*(s) = S(s^*)$

and from unitarity

 $S(s) = 1/S(s^*)$

zeroes from the first sheet -> poles on the second

Dispersion equation analysis of $\pi\pi$ scattering in Swave indicate a broad resonance around 500 MeV

FIG. 2: Domain of validity of the Roy equations.

Can dq-adq hadrons exist?

In the 't Hooft large N limit they do not exist since the leading term in the 1/N expansion of any two-point correlation function of a 4-q operator is a disconnected graph

But:

I. N=3

 other large N limits exist (Carrigan-Ramond) where the quark is in the 3*

in diagrams...

Stems from the fact that there are no color singlets made up of 3 fermions (baryons) for N>3. C-G introduce quarks and `larks` trasforming as N and 1/2 N(N-1) of SU(N) respectively. In SU(3), a lark=antiquark. In SU(N) a baryon is a qqL*.

dq-adq :: where else?

For some time they played a role to understand the so colled pentaquark baryons (Wilczek & Jaffe)
 The newly discovered X,Y,Z partilces [Belle & BaBar].

 $B^{\pm} \to K^{\pm} \pi^+ \pi^- J/\psi$ $X \rightarrow \rho J/\psi$

 $pp \to X \to \pi^+ \pi^- J/\psi$ $X \rightarrow \rho J/\psi$

X(3872) is a 1⁺⁺ state Is this compatible with a good dq-adq structure? NO!

We need bad, spin 1 diquarks But bad diquarks are less bound (lattice)...

Anyway X must contain charm quarks!

 m_{O}

spin – spin interactions $\sim \frac{1}{m_{\odot}}$

Building the states (L=0)

J^{PC}	wave functs.						
0++	$[cq]_0[c\bar{q}]_0 \lor ([cq]_1[c\bar{q}]_1)_0$						
1++	$\frac{[cq]_1[\bar{c}\bar{q}]_0 + [cq]_0[\bar{c}\bar{q}]_1}{\sqrt{2}}$						
1+-	$\frac{[cq]_1[\bar{c}\bar{q}]_0 - [cq]_0[\bar{c}\bar{q}]_1}{\sqrt{2}} \lor ([cq]_1[\bar{c}\bar{q}]_1)_1$						
2++	$([cq]_1[\bar c\bar q]_1)_2$						

 $([]_s[]_s)_J$

Isospin & 2 * X(387_) states

We set in the flavor basis X_u, X_d

$$M = \begin{pmatrix} 2m_u & 0\\ 0 & 2m_d \end{pmatrix} + \delta \begin{pmatrix} 1 & 1\\ 1 & 1 \end{pmatrix}$$

where the mixing matrix has a diagonal structure in the Isospin I = 0, 1 basis, its eigenvectors being

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \quad \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}$$

At the charmonium scale we expect the annihilations to be small and quark mass to dominate :: *observed* $X \rightarrow \omega/\rho$ isospin breaking

$$\frac{\mathcal{B}(X \to \pi^+ \pi^- \pi^0 J/\psi)}{\mathcal{B}(X \to \pi^+ \pi^- J/\psi)} = 1.0 \pm 0.4 \pm 0.3$$

G.C. Rossi, G. Veneziano; L. Maiani, F. Piccinini, ADP, V.Riquer PRD 2005

FIND THESE TWO X'S IN DATA (MPPR `05)

A MASS DIFFERENCE X_{U} - X_{D} OF ABOUT ~ 5 MEV WAS PREDICTED :: THEY COULD APPEAR IN B⁺ AND B⁰ SEPARATELY

 $B^+ \to K^+ X_u$ with rate Γ_1 $B^+ \to K^+ X_d$ with rate Γ_2 suppose $\Gamma_1 \gg \Gamma_2 \triangleright \Gamma_4 \gg \Gamma_3$ $B^0 \to K^0 X_u$ with rate Γ_3 $B^0 \to K^0 X_d$ with rate Γ_4

DIFFERENCE IN MASS FROM DATA NOT SIGNIFICATIVE!

X(3872): STILL SOME SURPRISES

- Masses between Belle and BaBar in good agreement
- 2.5 σ away from the X(3872) world average! $M(J/\psi\pi^+\pi^-) = 3871.2 \pm 0.5$ MeV (World Average)
- If X(3872), J^P = 2⁺ disfavored

hep-ex/0606055

V. Poireau DIS 2007 April 2007

Belle: Phys. Rev. Lett. 97 (2006) 162002 BaBar: preliminary

ARE THERE TWO DIFFERENT X PARTICLES?

(MAIANI, POLOSA, RIQUER PRL **`07**)

:: OUR NEW HYPOTHESIS: TWO X, GENERICALLY PRODUCED IN B^{+,0} ::

 $X_u \equiv X$ state decaying into $D^0 \bar{D}^0 \pi^0 = X(3876)$ $X_d \equiv X$ state decaying into $J/\psi \pi^+ \pi^- = X(3872)$

:: THE TWO NEUTRAL STATES IN THE 4Q-COMPLEX ::

 $X^{+} = [cu][\bar{c}\bar{d}] \quad X^{-} = [cd][\bar{c}\bar{u}]$ $X_{u} = [cu][\bar{c}\bar{u}] \quad X_{d} = [cd][\bar{c}\bar{d}]$

IT IS TRICKY THAT XD TURNS OUT TO BE LIGHTER THAN XU (MAYBE ELECTROSTATICS IS RESPONSIBLE FOR THIS)

HOW FAR IS THIS PICTURE CONSISTENT WITH A FOUR QUARK MODEL?

HOWEVER, THE ASSUMPTION, THAT XU AND XD WOULD DECAY IN J WITH SIMILAR BRANCHING RATIOS WAS NOT JUSTIFIED AND THE EARLIER SCHEME IS SUPERSEDED BY THE ONE PRESENTED HERE.

A REMARKABLE FACT

$$b + (u) \rightarrow \overline{c} + c\overline{s} + (u) + q\overline{q} \ (\Delta I = 0)$$

 $\mathcal{A}(B^+ \to K^+ X_u) = V + S = \mathcal{A}(B^0 \to K^0 X_d)$ $\mathcal{A}(B^+ \to K^+ X_d) = V = \mathcal{A}(B^0 \to K^0 X_u)$ $\mathcal{A}(B^+ \to K^0 X^+) = S = \mathcal{A}(B^0 \to K^+ X^-)$

AS A CONSEQUENCE WE HAVE

$$\left(\frac{B^0}{B^+}\right)_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^0 X_d) \mathcal{B}(X_d \to J/\psi \pi^+ \pi^-)}{\mathcal{B}(B^+ \to K^+ X_d) \mathcal{B}(X_d \to J/\psi \pi^+ \pi^-)} = \frac{\mathcal{B}(B^0 \to K^0 X_d)}{\mathcal{B}(B^+ \to K^+ X_d)} = \frac{\mathcal{B}(B^+ \to K^+ X_d) \mathcal{B}(X_d \to J/\psi \pi^+ \pi^-)}{\mathcal{B}(B^0 \to K^0 X_u)} = \frac{\mathcal{B}(B^+ \to K^+ X_u) \mathcal{B}(X_u \to D\bar{D}\pi)}{\mathcal{B}(B^0 \to K^0 X_u)} = \left[\left(\frac{B^0}{B^+}\right)_{D\bar{D}\pi}\right]^{-1}$$

WHAT DATA TELL (X(3872) AND X(3876) APPEAR TO BE RELATED BY U \Leftrightarrow D SYMMETRY!)

	$f = J/\psi \pi^+ \pi^-$	$f = D^0 \bar{D}^0 \pi^0$
$\mathcal{R}(\mathbb{R}^{\pm} \times \mathbb{K}^{\pm} \mathbb{Y}) \mathcal{R}(\mathbb{Y} \times \mathbb{F}) \times 10^5$	1.05 ± 0.18	$10.7 \pm 3.1^{1.9}_{3.3}$
$D(D \to K \land A)D(A \to J) \times 10$	$1.01 \pm 0.25 \pm 0.10$	
$\mathcal{R}(\mathcal{R}^0 \setminus \mathcal{K}^0 \mathcal{V}) \mathcal{R}(\mathcal{V} \setminus f) \times 10^5$		$17.3 \pm 7.0^{3.1}_{5.3}$
$D(D \to K X)D(X \to J) \times 10$	$0.51 \pm 0.28 \pm 0.07$	
$(\mathbf{p}^0 / \mathbf{p}^+)$		1.62 ± 0.80
$(D / D^+)f$	$0.50 \pm 0.30 \pm 0.05$	$2.23 \pm 0.93 \pm 0.55$

 \times

(V)alence and (S)ea needed to build the final state Kaons :: observe that the inverted pattern with BO was already observed in our first paper

A REMARKABLE FACT

$$b + (u) \rightarrow \overline{c} + c\overline{s} + (u) + q\overline{q} \ (\Delta I = 0)$$

 $\mathcal{A}(B^+ \to K^+ X_u) = \mathbf{V} + \mathbf{S} = \mathcal{A}(B^0 \to K^0 X_d)$ $\mathcal{A}(B^+ \to K^+ X_d) = \mathbf{V} = \mathcal{A}(B^0 \to K^0 X_u)$ $\mathcal{A}(B^+ \to K^0 X^+) = \mathbf{S} = \mathcal{A}(B^0 \to K^+ X^-)$

AS A CONSEQUENCE WE HAVE

$$\left(\frac{B^0}{B^+}\right)_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^0 X_d) \mathcal{B}(X_d \to J/\psi \pi^+ \pi^-)}{\mathcal{B}(B^+ \to K^+ X_d) \mathcal{B}(X_d \to J/\psi \pi^+ \pi^-)} = \frac{\mathcal{B}(B^0 \to K^0 X_d)}{\mathcal{B}(B^+ \to K^+ X_d)} = \frac{\mathcal{B}(B^+ \to K^+ X_d) \mathcal{B}(X_d \to J/\psi \pi^+ \pi^-)}{\mathcal{B}(B^0 \to K^0 X_u)} = \frac{\mathcal{B}(B^+ \to K^+ X_u) \mathcal{B}(X_u \to D\bar{D}\pi)}{\mathcal{B}(B^0 \to K^0 X_u)} = \left[\left(\frac{B^0}{B^+}\right)_{D\bar{D}\pi}\right]^{-1}$$

WHAT DATA TELL (X(3872) AND X(3876) APPEAR TO BE RELATED BY U \Leftrightarrow D SYMMETRY!)

	$f = J/\psi \pi^+ \pi^-$	$f = D^0 \bar{D}^0 \pi^0$
$\mathcal{R}(\mathbf{P}^{\pm} \times \mathbf{K}^{\pm} \mathbf{V}) \mathcal{R}(\mathbf{V} \times \mathbf{f}) \times 10^5$	1.05 ± 0.18	$10.7 \pm 3.1^{1.9}_{3.3}$
$D(D \to K \land A)D(A \to J) \times 10$	$1.01 \pm 0.25 \pm 0.10$	
$\mathcal{R}(\mathcal{R}^0 \setminus \mathcal{K}^0 \mathcal{Y}) \mathcal{R}(\mathcal{Y} \setminus f) \times 10^5$		$17.3 \pm 7.0^{3.1}_{5.3}$
$D(D \to K \land J)D(\Lambda \to J) \times 10$	$0.51 \pm 0.28 \pm 0.07$	
$(\mathcal{D}^0/\mathcal{D}^+)$		1.62 ± 0.80
$(B^{\circ}/B^{+})_{f}$	$0.94 \pm 0.24 \pm 0.10$	$1.33 \pm 0.69 \pm 0.52$

(V)alence and (S)ea needed to build the final state Kaons :: observe that the inverted pattern with BO was already observed in our first paper

This is the first charged state observed. A 2S state?

Z(4433) as a 1+-

J/Ψ π(η), η_c ρ(ω) (MPPR 05)

Is the Z(4433) the 2S radial excitation of the 3880?

Z is 600 MeV higher than the X(1⁺⁻,1S) and decays to $\Psi(2S)$ rather than $\Psi :: M(\Psi(2S))-M(\Psi(1S)) \sim 590$ MeV

L. Maiani, A. Polosa, V. Riquer, arXiv:0708.3997v1 [hep-ph] 29 Aug 2007

What to look for

- Neutral partners of Z(4433)~X(1+-,2S) should be close by few MeV and decaying to ψ(2S) π/η or η_c(2S) ρ/ω
- What about X(1⁺⁻,1S)? Look for any charged state at
 ≈ 3880 MeV (decaying to Ψπ or η_cρ)
- Similarly one expects X(1++,2S) states. Look at M~4200-4300: X(1++,2S)->D^(*)D^(*)
- Baryon-anti-baryon thresholds at hand (4572 MeV for $2M_{\Lambda c}$ and 4379 MeV for $M_{\Lambda c}+M_{\Sigma c}$). X(2⁺⁺,2S) might be over bb-threshold.

The condensed matter physics of QCD

Alford, Rajagopal, Wilczek, '98-'00 and many others

Diquarks play a crucial role

Astrophysical applications (glitches in pulsars...!)

Conclusions

The 4q-model gives the simplest interpretation of sub-GeV scalar mesons, of the 2-X's observed (prediction), and of the charged state (prediction).

Still other particles have to be found to firmly assess this interpretation for the heavy-light states.

If confirmed it has strong implications on various theoretical aspects of QCD.

some back up slides

Y(4260): ANOTHER MYSTERY

• New resonance discovered in $e^+e^- \rightarrow \gamma_{ISR}(J/\psi\pi^+\pi^-)$ by **BaBar**

- BaBar measures: M = (4259 ± 8) MeV/c², Γ = (88 ± 23) MeV
- Belle measures: M = (4295 ± 10 ⁺¹⁰₋₃) MeV/c², Γ = (133 ⁺²⁶₋₂₂ ⁺¹³₋₆) MeV
- Confirmed by CLEO: M = (4283 +17 -16 ± 4) MeV/c²
- No evidence for:
 - $\bullet e^+e^- \rightarrow \gamma_{\rm ISR}(D\overline{D}), e^+e^- \rightarrow \gamma_{\rm ISR}(\phi\pi^+\pi^-), e^+e^- \rightarrow \gamma_{\rm ISR}(p\overline{p}), e^+e^- \rightarrow \gamma_{\rm ISR}(J/\psi\gamma\gamma)$
- 3σ enhancement in B decays
 - B⁻→YK⁻, Y→J/ψπ⁺π⁻
 - Needs confirmation

16 V. Poireau DIS 2007 April 2007

BaBar: Phys. Rev. Lett. 95 (2005) 142001 Belle: hep-ex/0612006 BaBar: hep-ex/0607083 BaBar: PRD 73, 011101 (2006)

SATELLITES?

Call in Bad Diquarks :: $S = 2 \land L = 1$ possible

 $S = 2 = 1 \oplus 1$:: decay preferably to $D_s^* D_s^* \triangleright$ reduction of decay width

Y(4260)... AND Y(4325)?

• Study of Y(4260) $\rightarrow \psi(2S)\pi\pi$ in ISR production

M= (4324 ± 24) MeV/c² Γ = (172 ± 33) MeV

- Incompatible
 - with BaBar Y(4260), ψ(4415) or 3-body phase space
- Compatible
 - with Belle Y("4295")

17 V. Poireau DIS 2007 April 2007

BaBar: hep-ex/0610057

BUT CLEO FINDS NO Fo

Y(4260), discovered by BaBar in 2005, ISR, J^{PC}=1⁻⁻

$ee \rightarrow J/\psi \pi \pi \ cross-section$

EPS-HEP 2007, Manchester, July 2007

We did not yet consider any mixing between Xu & Xd

 $\mathcal{A}(B^+ \to K^+ X_u) = \mathbf{V} + \mathbf{S} = \mathcal{A}(B^0 \to K^0 X_d)$ $\mathcal{A}(B^+ \to K^+ X_d) = \mathbf{V} = \mathcal{A}(B^0 \to K^0 X_u)$ $\mathcal{A}(B^+ \to K^0 X^+) = \mathbf{S} = \mathcal{A}(B^0 \to K^+ X^-)$

DECAYS

POSSIBLE DECAY MODES:

>=3 for spin parity 1+

1 :: ANNIHILATION INTO GLUONS (> 2) GIVING A MULTIHADRON UNCHARMED FINAL STATE

RATE EXPECTED TO BE SIMILAR TO: $\Gamma_{ann}(X) \simeq \Gamma(\chi_{c1}) = 0.96 \text{ MeV}$

2 :: ANNIHILATION $X o gg + q \bar{q}$ but CCB are J=1 (voloshin), so \Rightarrow to two gluons

3 :: QUARK REARRANGEMENT (VIA TUNNELING) GIVING OPEN CHARM OR ψ

DECAYS

QUALITATIVELY WE EXPECT THAT :: (1) MUST BE SMALL (FLAVOR) :: (2) IS LARGER THAN (3)

ALTERNATIVE: TWIST C AND MAKE J/ψ

BY QUARK FLAVOR CONSERVATION X_D SHOULD DECAY IN D^+D^{*-} :: PHASE SPACE FORBIDDEN. D^0D^{*0} is suppressed twice because $uu \leftrightarrow dd$

& BECAUSE OF A SMALL 'REDUCED RATE'

WE COULD TWIST HERE C AS WELL; BUT THE *CHEAPEST* ALTERNATIVE IS STILL DD*

 $\Gamma(X_u \to D^0 \bar{D}^0 \pi^0) >> \Gamma(X_u \to J/\psi \pi^+ \pi^-) \simeq$ $\simeq \Gamma(X_d \to J/\psi \pi^+ \pi^-) >> \Gamma(X_d \to D^0 \bar{D}^0 \pi^0)$

A QUALITATIVE PICTURE OF THE BARRIERS

THE YET UNOBSERVED X⁺⁻

EXPERIMENTAL BOUNDS

 $\mathcal{B}(B^+ \to K^0 X^+) \mathcal{B}(X^+ \to J/\psi \pi^+ \pi^0) \le 2.2 \times 10^{-5} \\ \mathcal{B}(B^0 \to K^+ X^-) \mathcal{B}(X^- \to J/\psi \pi^- \pi^0) \le 0.54 \times 10^{-5}$

USING PREVIOUS RESULTS WE GET

$$\frac{\mathcal{B}(X^{-} \to \psi \pi^{-} \pi^{0})}{\mathcal{B}(X_{d} \to \psi \pi \pi)} \equiv \frac{\mathcal{B}(B^{0} \to K^{+} X^{-}) \mathcal{B}(X^{-} \to \psi \pi^{-} \pi^{0})}{\mathcal{B}(B^{0} \to K^{+} X^{-}) \mathcal{B}(X_{d} \to \psi \pi \pi)} \leq \frac{0.54 \times 10^{-5}}{\mathcal{B}(B^{0} \to K^{+} X^{-}) \mathcal{B}(X_{d} \to \psi \pi \pi)} \frac{\mathcal{B}(B^{0} \to K^{0} X_{d})}{\mathcal{B}(B^{0} \to K^{0} X_{d})} = \frac{0.54}{0.51} \frac{\mathcal{B}(B^{0} \to K^{0} X_{d})}{\mathcal{B}(B^{0} \to K^{+} X^{-})} \simeq \frac{\left|\frac{V+S}{S}\right|^{2} \times \frac{0.54}{0.51}}{\mathbb{E}_{*}} \text{ THE LIMIT}$$

$$\mathcal{B}(X^+ \to J/\psi\pi^+\pi^0) \le \left(\underbrace{\left|\frac{V+S}{S}\right|}_?\right)^2 \times \frac{0.54}{0.51} \times \mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)$$

The constituent quark model

$$H = \sum_{i} m_i + \sum_{i < j} 2\kappa_{ij} (S_i \cdot S_j)$$

De Rujula-Georgi-Glashow

$$H([cq][\bar{c}\bar{q}']) = 2m_{[cq]} + 2\kappa_{cq} \left[S_c \cdot S_q + S_{\bar{c}} \cdot S_{\bar{q}'}\right] + 2\kappa_{q\bar{q}} S_q \cdot S_{\bar{q}'} + 2\kappa_{c\bar{q}} \left[S_c \cdot S_{\bar{q}'} + S_{\bar{c}} \cdot S_q\right] + 2\kappa_{c\bar{c}} S_c \cdot S_{\bar{c}}$$

				-								-
	q	8	c				$q\bar{q}$	$s\bar{q}$	$s\bar{s}$	$c\bar{q}$	$c\bar{s}$	cē
constituent	305	490	1670	(κ_{ij})	o (Me	V)	315	195	121^{*}	70	72	59
mass (MeV)	362	546	1721	(κ_{ij})	$_0m_im_j$	(GeV)	3 0.02	9 0.029		0.036	0.059	0.16
					aa	80	ca	C8		3 13 6 81		11211
	(6	$(\kappa_{ii}) = (MeV)$		103	64	22	25					
	(ĸ	$(\kappa_{ij})_{\bar{s}} m_i m_j (\text{GeV})^3$		0.014	0.013	0.014	0.024					
	1.0	110	- J.									

From data on L=0 mesons and baryons we find relations for the <u>constituent masses</u> and for the <u>couplings</u>.

The X Mass Spectrum

The X Mass Spectrum

The X Mass Spectrum

X(3872): charmonio?

ISOSPIN VIOLATION AND TWO X'S (MPPR `05)

$$\frac{\mathcal{B}(X \to \pi^+ \pi^- \pi^0 J/\psi)}{\mathcal{B}(X \to \pi^+ \pi^- J/\psi)} = 1.0 \pm 0.4 \pm 0.3$$

FROM EARLY OBSERVATIONS BY BELLE AND BABAR (`03-`04)

MOLECULES

4-QUARKS

NO PROBLEM WITH ISOSPIN VIOLATION :: <u>1 STATE</u> :: <u>SMALL</u> DECAY RATE TO DDπ ~I fm

NEED <u>TWO STATES</u>, AND MAKE ISOSPIN VIOLATION POSSIBLE $X_u = [cu][\bar{u}\bar{c}]$ $X_d = [cd][\bar{d}\bar{c}]$

THESE TWO INTERPRETATIONS ARE NOT `COMPLEMENTARY` OR `UNRESOLVABLE`. THEY YIELD DIFFERENT PREDICTIONS.