

Hadroproduction of J/ψ and Υ in association with a heavy-quark pair

International Workshop on Heavy Quarkonium 2007 17-20 October 2007, DESY Hamburg

Jean-Philippe LANSBERG Heidelberg U.

in collaboration with P. Artoisenet and F. Maltoni

Outline

- \Rightarrow A few words on double-charm production at *B*-factories
- Double heavy-quark-pair hadroproduction as

a new observable

- Brief reminder on the Colour-Singlet Model
- $\Rightarrow Q + Q\bar{Q}$: Testing the quark-fragmentation approximation
- $\Rightarrow Q + Q\bar{Q}$: Results
- $\Rightarrow Q + Q\overline{Q}$: CSM vs. COM
- $\Rightarrow Q + Q\bar{Q}$: Polarisation
- Conclusions

- \Rightarrow Exclusive production e.g. $\sigma (e^+e^- \rightarrow J/\psi + \eta_c)$
 - → Belle $\sigma (e^+e^- \rightarrow J/\psi + \eta_c) = 25.6 \pm 2.8 \pm 3.4$ fb
 - → BaBar $\sigma (e^+e^- \rightarrow J/\psi + \eta_c) = 17.6 \pm 2.8^{+.15}_{-2.1}$ fb

PRD70, 071102,2004 PRD72:031101,2005.

- \Rightarrow Exclusive production e.g. $\sigma (e^+e^- \rightarrow J/\psi + \eta_c)$
 - → Belle $\sigma (e^+e^- \rightarrow J/\psi + \eta_c) = 25.6 \pm 2.8 \pm 3.4$ fb
 - → BaBar $\sigma (e^+e^- \rightarrow J/\psi + \eta_c) = 17.6 \pm 2.8^{+.15}_{-2.1}$ fb

 $\sigma_{LCWF} \sim 30$ fb

→ LO NRQCD $\sigma_0 = 3 - 5.5$ fb

PRD70, 071102,2004

PRD72:031101,2005.

- Liu,He, Chao, PLB557:45,2003
- Braaten, Lee, PRD67:054007,2003
- Bondar, Chernyak, PLB612:215, 2005

 \rightarrow NRQCD "relativistic" correction:

$$\sigma \left(e^+ e^- \to J/\psi + \eta_c \right) = \sigma_0 \left(1 + 1.95 \langle v_{J/\psi}^2 \rangle + 2.37 \langle v_{\eta_c}^2 \rangle \right)$$

Braaten, Lee, PRD67: 054007 (2003),...

- → NLO QCD corrections: $\sigma_{NLO} \simeq 1.96 \times \sigma_{LO}$ Zhang et al., PRL96:092001, 2006
- → Combining all corrections: possible agreement:

$$\sigma (e^+e^- \to J/\psi + \eta_c) = 17.5 \pm 5.7 \text{ fb}$$

 \rightarrow I CWF

- \Rightarrow Inclusive production e.g. $\sigma (e^+e^- \rightarrow J/\psi + c\overline{c})$
 - → Belle (2001) $\sigma (e^+e^- \rightarrow J/\psi + X) = 1.47 \pm 0.10 \pm 0.11 \text{ pb}$
 - → BaBar (2001) $\sigma (e^+e^- \rightarrow J/\psi + X) = 2.52 \pm 0.21 \pm 0.21$ pb
 - → Belle (2002) $\sigma (e^+e^- \rightarrow J/\psi + c\bar{c}) = 0.87^{+0.21}_{-0.19} \pm 0.17 \text{ pb}$
 - \rightarrow Belle (2003): Model-independent extraction of the ratio

 $\frac{\sigma (e^+e^- \to J/\psi + c\bar{c})}{\sigma (e^+e^- \to J/\psi + X)} = 0.82 \pm 0.15 \pm 0.14 > 0.48 \text{ at } 95\% \text{ CL}$

T. Uglov, EPJC33:S235,2004

- \Rightarrow Inclusive production e.g. $\sigma (e^+e^- \rightarrow J/\psi + c\overline{c})$
 - → Belle (2001) $\sigma (e^+e^- \rightarrow J/\psi + X) = 1.47 \pm 0.10 \pm 0.11 \text{ pb}$
 - → BaBar (2001) $\sigma (e^+e^- \rightarrow J/\psi + X) = 2.52 \pm 0.21 \pm 0.21$ pb
 - → Belle (2002) $\sigma (e^+e^- \rightarrow J/\psi + c\bar{c}) = 0.87^{+0.21}_{-0.19} \pm 0.17 \text{ pb}$
 - → Belle (2003): Model-independent extraction of the ratio $\frac{\sigma (e^+e^- \rightarrow J/\psi + c\bar{c})}{\sigma (e^+e^- \rightarrow J/\psi + X)} = 0.82 \pm 0.15 \pm 0.14 > 0.48 \text{ at } 95\% \text{ CL}$ T. Uglov, EPJC33:S235,2004
 - → LO NRQCD $\sigma_0 (e^+e^- \rightarrow J/\psi + c\bar{c}) = 0.09 \text{ pb}$
 - → Small (and negative) NRQCD "relativistic" correction

P. Artoisenet

→ NLO QCD corrections: $\sigma_{NLO} \simeq 1.8 \times \sigma_{LO}$

Zhang, Chao, PRL98:092003, 2007

- \Rightarrow Inclusive production e.g. $\sigma (e^+e^- \rightarrow J/\psi + c\overline{c})$
 - → Belle (2001) $\sigma (e^+e^- \rightarrow J/\psi + X) = 1.47 \pm 0.10 \pm 0.11 \text{ pb}$
 - → BaBar (2001) $\sigma (e^+e^- \rightarrow J/\psi + X) = 2.52 \pm 0.21 \pm 0.21$ pb
 - → Belle (2002) $\sigma (e^+e^- \rightarrow J/\psi + c\bar{c}) = 0.87^{+0.21}_{-0.19} \pm 0.17 \text{ pb}$
 - → Belle (2003): Model-independent extraction of the ratio $\frac{\sigma (e^+e^- \rightarrow J/\psi + c\bar{c})}{\sigma (e^+e^- \rightarrow J/\psi + X)} = 0.82 \pm 0.15 \pm 0.14 > 0.48 \text{ at } 95\% \text{ CL}$ T. Uglov, EPJC33:S235,2004
 - → LO NRQCD $\sigma_0 (e^+e^- \rightarrow J/\psi + c\bar{c}) = 0.09 \text{ pb}$
 - → Small (and negative) NRQCD "relativistic" correction

P. Artoisenet

→ NLO QCD corrections: $\sigma_{NLO} \simeq 1.8 \times \sigma_{LO}$

Zhang, Chao, PRL98:092003, 2007

 ✓ Irrespective of what would be the theoretical explanations, associated J/ψ production is a dominant channel
 ✓ We invite experimentalists to study it at pp and ep colliders.

Beside being likely large, double charm HADRO-production is a new valuable observable

which can

 \rightarrow probe the colour-singlet part alone: (σ and α)

Beside being likely large, double charm HADRO-production is a new valuable observable

which can

- \rightarrow probe the colour-singlet part alone: (σ and α)
- \rightarrow test the universality of the colour-octet matrix elements

Beside being likely large, double charm HADRO-production is a new valuable observable

which can

- \rightarrow probe the colour-singlet part alone: (σ and α)
- \rightarrow test the universality of the colour-octet matrix elements
- \rightarrow -in general- test many models which provided mostly "postdictions"

for a recent review, see e.g JPL IJMPA 21 3857-3915 (2006)

Beside being likely large, double charm HADRO-production is a new valuable observable

which can

- \rightarrow probe the colour-singlet part alone: (σ and α)
- \rightarrow test the universality of the colour-octet matrix elements
- \rightarrow -in general- test many models which provided mostly "postdictions"

for a recent review, see e.g JPL IJMPA 21 3857-3915 (2006)

- On the pure theory side
 - → Part of the NLO QCD-corrections to inclusive production $(pp \rightarrow QX)$ which contains e.g. $\frac{1}{P_T^4}$ contributions

Beside being likely large,

double charm HADRO-production is a new valuable observable

which can

- \rightarrow probe the colour-singlet part alone: (σ and α)
- \rightarrow test the universality of the colour-octet matrix elements
- \rightarrow -in general- test many models which provided mostly "postdictions"

for a recent review, see e.g JPL IJMPA 21 3857-3915 (2006)

- → On the pure theory side
 - → Part of the NLO QCD-corrections to inclusive production $(pp \rightarrow QX)$ which contains e.g. $\frac{1}{P_T^4}$ contributions
 - → Test of the fragmentation approximation

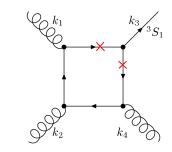
Beside being likely large,

double charm HADRO-production is a new valuable observable

which can

- \rightarrow probe the colour-singlet part alone: (σ and α)
- \rightarrow test the universality of the colour-octet matrix elements
- \rightarrow -in general- test many models which provided mostly "postdictions"

for a recent review, see e.g JPL IJMPA 21 3857-3915 (2006)

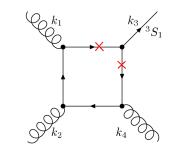

- → On the pure theory side
 - → Part of the NLO QCD-corrections to inclusive production $(pp \rightarrow QX)$ which contains e.g. $\frac{1}{P_T^4}$ contributions
 - → Test of the fragmentation approximation
 - → NRQCD factorisation ?

See J.W. Qiu's talk

Brief reminder on the Colour Singlet Model (CSM) I

One supposes factorisation between the hard part and the soft part

- \Rightarrow The hard part consists in the creation of two quarks Q and \bar{Q} BUT
 - \rightarrow on-shell (x)
 - → in a colour singlet state (we want a physical state thereafter)
 - \rightarrow with a vanishing relative momentum
 - \rightarrow in a ${}^{3}S_{1}$ state (for J/ψ , ψ' and Υ)

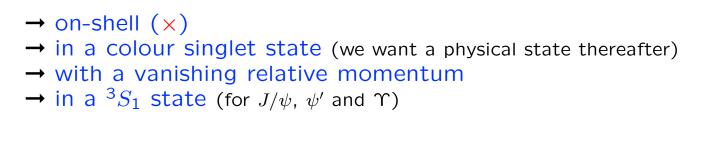


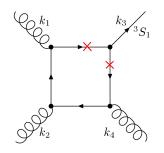
For the soft part, the amplitude of probability that the quarks bind is given by a Schrödinger wave function

Brief reminder on the Colour Singlet Model (CSM) I

One supposes factorisation between the hard part and the soft part

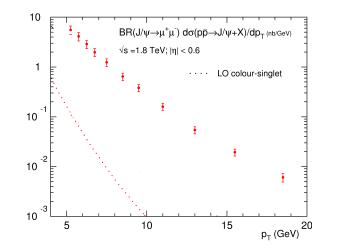
- \Rightarrow The hard part consists in the creation of two quarks Q and \bar{Q} BUT
- → on-shell (×)
 → in a colour singlet state (we want a physical state thereafter)
 → with a vanishing relative momentum
- \rightarrow in a 3S_1 state (for J/ψ , ψ' and Υ)

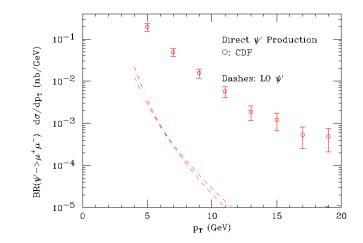

✓ For the soft part, the amplitude of probability that the quarks bind is given by a Schrödinger wave function


→ This description seems correct and compatible with all experiments until the CDF measurements of the J/ψ and ψ' direct production at $\sqrt{s} = 1.8$ TeV,

Brief reminder on the Colour Singlet Model (CSM) I

One supposes factorisation between the hard part and the soft part

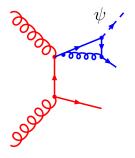

 \Rightarrow The hard part consists in the creation of two quarks Q and \overline{Q} BUT



➡ For the soft part, the amplitude of probability that the quarks bind is given by a Schrödinger wave function

→ This description seems correct and compatible with all experiments until the CDF measurements of the J/ψ and ψ' direct production at $\sqrt{s} = 1.8$ TeV,

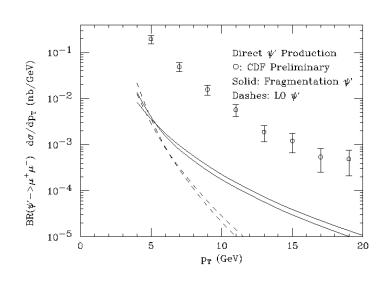
Brief reminder on the Colour Singlet Model (CSM) II

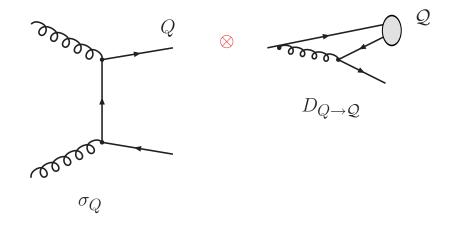

- Introduction of quark and gluon fragmentation processes:
 - → Effectively NLO (α_s^4 instead of α_s^3): this explains why not introduced before

Door

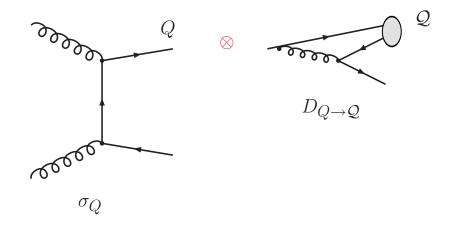
Cacciari, Greco, PRL73:1586,1994 Braaten *et al.*, PLB333:548,1994

Brief reminder on the Colour Singlet Model (CSM) II

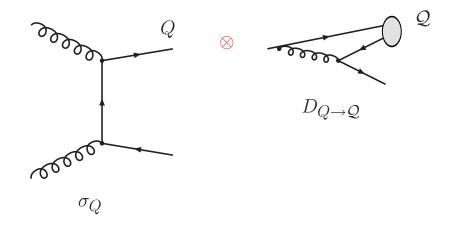

- Introduction of quark and gluon fragmentation processes:
 - → Effectively NLO (α_s^4 instead of α_s^3): this explains why not introduced before


Cacciari, Greco, PRL73:1586,1994 Braaten *et al.*, PLB333:548,1994

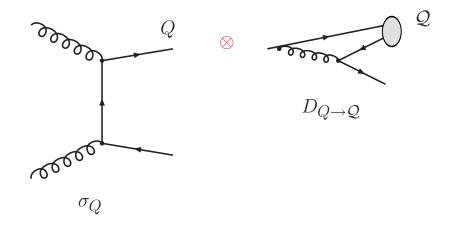
→ Different p_T behaviour: $\frac{1}{P_T^4}$ VS. $\frac{1}{P_T^8}$.



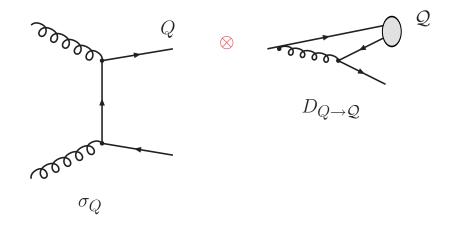
$$d\sigma_{\mathcal{Q}}(P) \simeq \int_0^1 dz d\sigma_{Q_i}(P/z, \mu_{frag}) D_{Q_i \to \mathcal{Q}}(z, \mu_{frag})$$


 \rightarrow Supposed to be valid of $P_T > 2m_Q$

$$d\sigma_{\mathcal{Q}}(P) \simeq \int_0^1 dz d\sigma_{Q_i}(P/z, \mu_{frag}) D_{Q_i \to \mathcal{Q}}(z, \mu_{frag})$$


→ Supposed to be valid of $P_T > 2m_Q$ → $\sigma_{Q_i}(\frac{P}{z}, \mu_{frag})$: quark on-shell

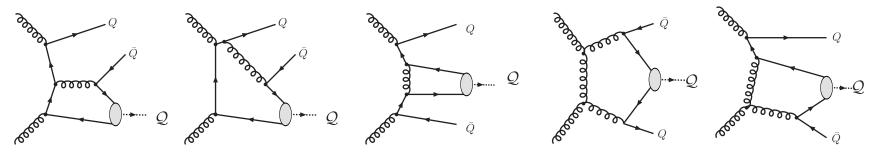
$$d\sigma_{\mathcal{Q}}(P) \simeq \int_0^1 dz d\sigma_{Q_i}(P/z, \mu_{frag}) D_{Q_i \to \mathcal{Q}}(z, \mu_{frag})$$


- → Supposed to be valid of $P_T > 2m_Q$
- $\rightarrow \sigma_{Q_i}(\frac{P}{z}, \mu_{frag})$: quark on-shell
- → Evolution equations for $D_{Q_i \rightarrow Q}(z, \mu_{frag})$

$$d\sigma_{\mathcal{Q}}(P) \simeq \int_0^1 dz d\sigma_{Q_i}(P/z, \mu_{frag}) D_{Q_i \to \mathcal{Q}}(z, \mu_{frag})$$

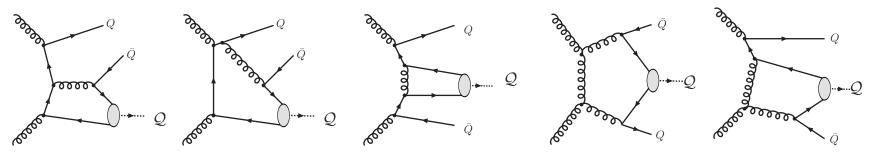
- → Supposed to be valid of $P_T > 2m_Q$
- $\rightarrow \sigma_{Q_i}(\frac{P}{z}, \mu_{frag})$: quark on-shell
- → Evolution equations for $D_{Q_i \rightarrow Q}(z, \mu_{frag})$
- → Genuine $\frac{1}{P_T^4}$ behaviour up to the evolution of D(z)

$$d\sigma_{\mathcal{Q}}(P) \simeq \int_0^1 dz d\sigma_{Q_i}(P/z, \mu_{frag}) D_{Q_i \to \mathcal{Q}}(z, \mu_{frag})$$

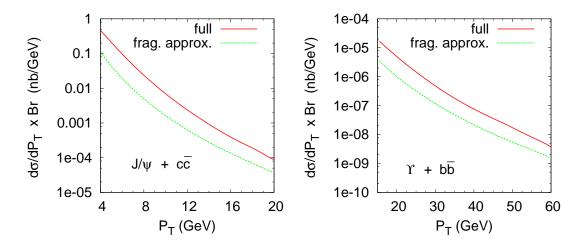


- \rightarrow Supposed to be valid of $P_T>2m_Q$
- $\rightarrow \sigma_{Q_i}(\frac{P}{z}, \mu_{frag})$: quark on-shell
- → Evolution equations for $D_{Q_i \rightarrow Q}(z, \mu_{frag})$
- → Genuine $\frac{1}{P_{T}^{4}}$ behaviour up to the evolution of D(z)
- → Dominate the CSM inclusive & -thus- the associated production

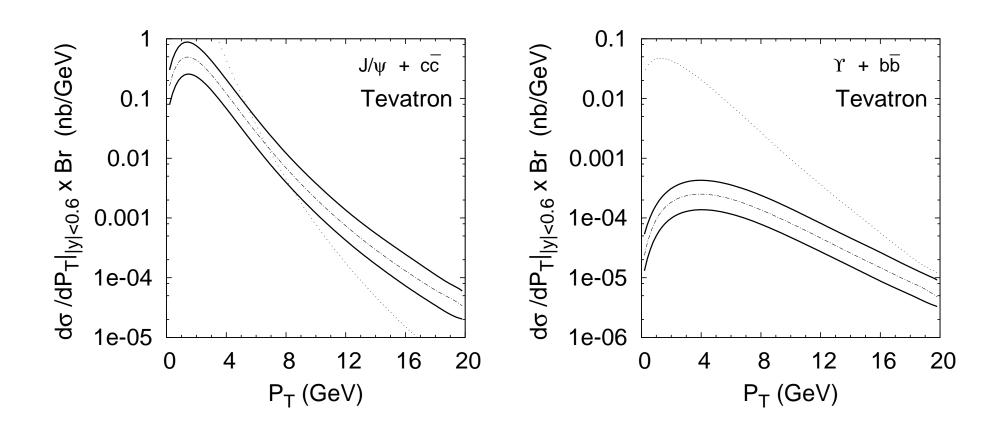
Braaten et al.


$Q + Q\bar{Q}$: testing the quark-fragmentation approximation

- → A priori $\sigma(Q + Q\overline{Q})$ could be approximated by the fragmentation approx leading P_T behaviour
- → We would *just* miss some (sub-dominant) topologies like:


$Q + Q\bar{Q}$: testing the quark-fragmentation approximation

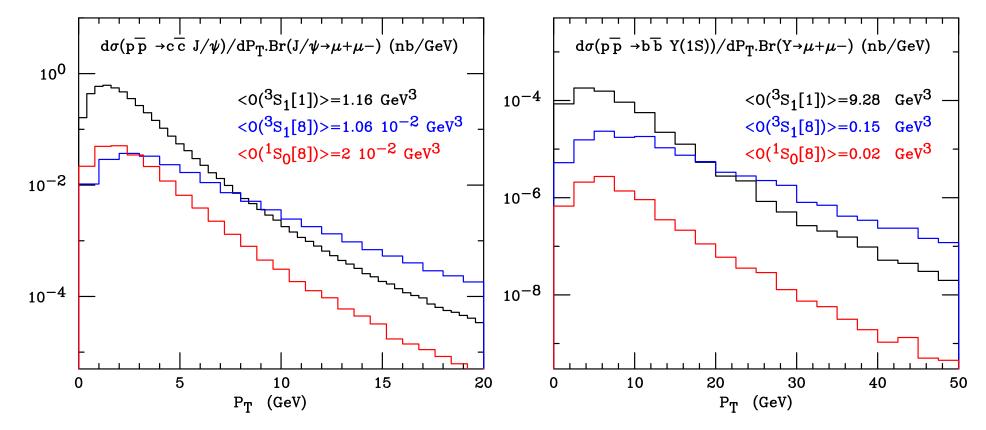
- → A priori $\sigma(Q + Q\bar{Q})$ could be approximated by the fragmentation approx leading P_T behaviour
- → We would *just* miss some (sub-dominant) topologies like:


 \rightarrow However, the comparison with the full LO CSM for $pp \rightarrow Q + Q\bar{Q}$ shows

no ambiguity: The fragmentation approximation does not work !

J.P. Lansberg, Heidelberg U.

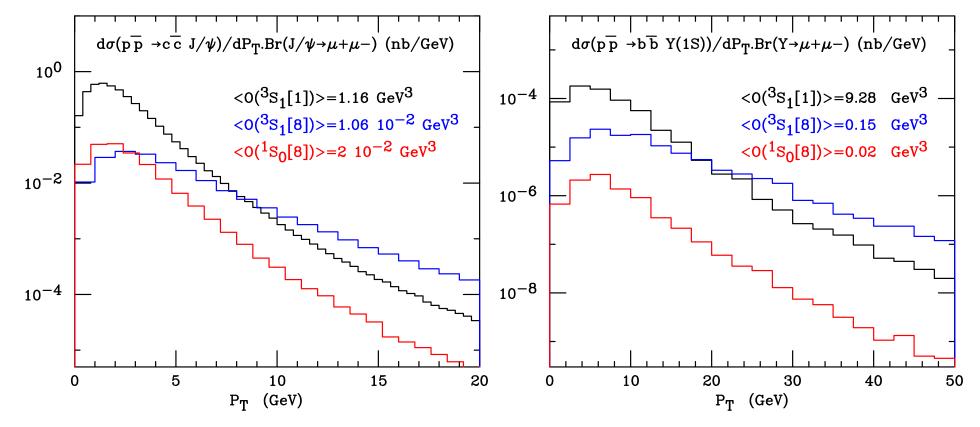
 $Q + Q\bar{Q}$: **Results**



 \Rightarrow Larger than $pp \rightarrow Qg$ at large P_T :

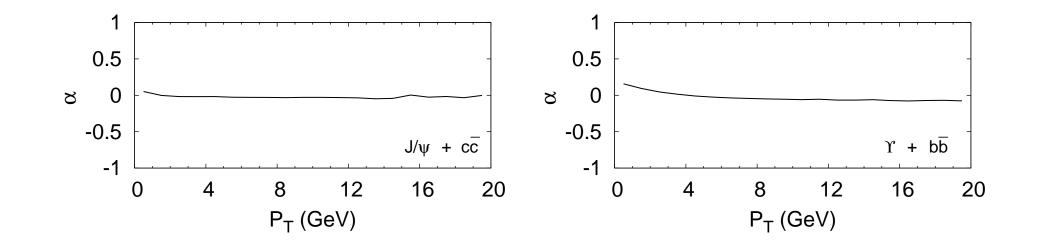
points at large NLO (α_S^4) corrections \Rightarrow Predictions done for LHC as well

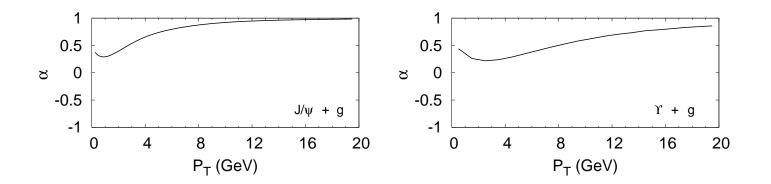
P.Artoisenet



 \Rightarrow CSM contributions dominate at low P_T

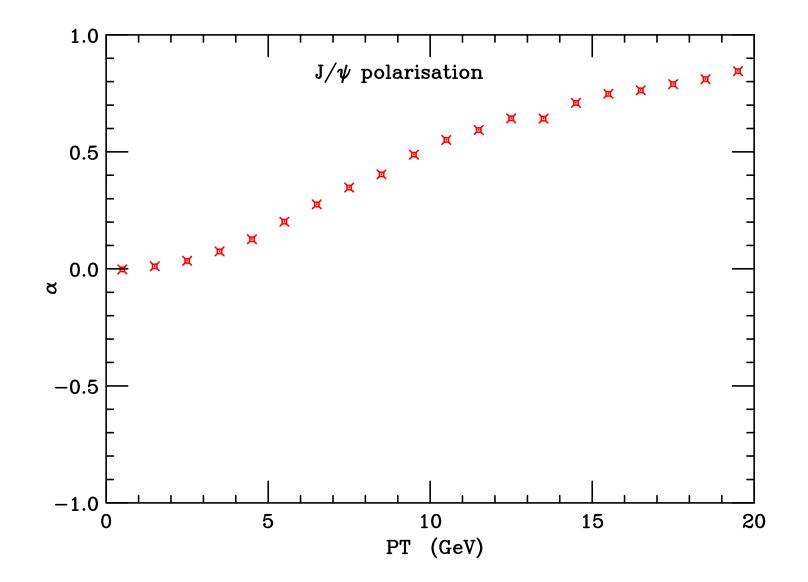
 \Rightarrow COM contributions dominate from $P_T \ge 15$ GeV


P.Artoisenet


 \Rightarrow CSM contributions dominate at low P_T

- \Rightarrow COM contributions dominate from $P_T \ge 15$ GeV
- ✓ Integrated cross section largely dominated by CSM contributions
- \rightleftharpoons Can rely on CSM predictions for α for $P_T \leq 15$ GeV

 $Q + Q\bar{Q}$: polarisation



whereas the –unmeasurable– CSM polarisation for $gg \to Qg$ was (LO CSM for $p\bar{p} \to Q + X$)

$\mathcal{Q} + Q\bar{Q}$: polarisation with COM included

P.Artoisenet

Conclusions

Reasons to measure associated hadro-production:

Conclusions

- → Is associated production experimentally large everywhere ?

- → Is associated production experimentally large everywhere ?
- \rightarrow Is the Colour-singlet model right ?

- → Is associated production experimentally large everywhere ?
- \rightarrow Is the Colour-singlet model right ?
- → Are the Colour-octet LDMEs universal ?

- → Is associated production experimentally large everywhere ?
- \rightarrow Is the Colour-singlet model right ?
- → Are the Colour-octet LDMEs universal ?

- → Is associated production experimentally large everywhere ?
- \rightarrow Is the Colour-singlet model right ?
- → Are the Colour-octet LDMEs universal ?
- → We showed that quark-fragmentation approximation was not applicable

- → Is associated production experimentally large everywhere ?
- \rightarrow Is the Colour-singlet model right ?
- → Are the Colour-octet LDMEs universal ?
- → We showed that quark-fragmentation approximation was not applicable
- → We computed a significant part of the NLO corrections
- → We confirmed that the NLO corrections are large