

Bottomonium Results from CLEO

Brian Heltsley

on behalf of the CLEO Collaboration

Common decays - Dipion matrix elements in $\Upsilon(mS) \rightarrow \pi \pi \Upsilon(nS)$ - $\chi_{bJ} \rightarrow Open$ charm Rare decays - $\Upsilon(mS) \rightarrow \eta/\pi^0 \Upsilon(nS)$ - Deuteron production in ggg+ γ gg vs $\gamma^* \rightarrow qq$ Beyond the Standard Model decays - $\Upsilon(1S) \rightarrow \text{Invisible}$ - $\Upsilon(1S) \rightarrow \gamma$ + light pseudoscalar Higgs($\rightarrow \tau^+ \tau^-$)

Common Decays of Bottomonium

σδ ππ Transitions in Onia QuG

- Provide insight into the multipole moments of chromo-dynamic field
- Theoretical interest in factoring out dipion excitation
- PCAC provides guidance for the form of matrix element
 - Phase space alone not enough
 - Simplest term gives enhancement at high $M(\pi\pi)$
 - Yan model [PRD 22, 1652 (1980)] fits explain
 - $\Box \psi (2S) \rightarrow \pi \pi J/\psi$
 - $\Box\Upsilon(2S) \rightarrow \pi\pi\Upsilon(1S)$
 - $\Box\Upsilon(3S) \rightarrow \pi\pi\Upsilon(2S)$
 - Yan model does NOT explain:
 - $\Box \Upsilon(3S) \rightarrow \pi\pi \Upsilon(1S)$
 - $\Box \Upsilon(4S) \rightarrow \pi\pi \Upsilon(2S)$
 - B. Heltsley QWG5@DESY, Oct 18, 2007

\checkmark The M($\pi\pi$) Territory QuG

How to understand it?

• $M(\pi\pi)$ structure has been long considered an anomaly worth addressing- many ideas

- Final state interactions?
- σ [f₀(600)] resonance in the $\pi\pi$ system
- Exotic $\Upsilon\pi$ resonances
- ad hoc constant term in matrix element
- coupled channel effects
- S-D mixing
- Relativistic corrections

How can CLEO III bottomonium data help?

- Y system is non-relativistic
 - theoretically simpler than ψ
- Dataset allows a 2D Dalitz analysis
- CLEO III's ability to reconstruct $\pi^+\pi^-$ & $\pi^0\pi^0$
 - Statistics & sensitivity to make the 2D fit

2D Approach

Brown and Cahn [PRL 35, 1 (1975)] use PCAC and current algebra: $M = A (\varepsilon^* \cdot \varepsilon) (M_{\pi\pi}^2 - 2m_{\pi}^2) + \qquad \qquad \text{Gives usual high mass pe}$

 $\begin{array}{ll} \mathbf{B} \left(\boldsymbol{\varepsilon}^{*} \boldsymbol{\cdot} \boldsymbol{\varepsilon} \right) \mathbf{E}_{\pi 1} \mathbf{E}_{\pi 2} &+ & \boldsymbol{\infty} \ \mathbf{cos} \ \boldsymbol{\theta}_{\pi \Upsilon} \ \mathbf{in} \ \pi \pi \ \mathbf{rest} \ \mathbf{fra} \\ \mathbf{C} \left[\left(\boldsymbol{\varepsilon}^{*} \boldsymbol{\cdot} \mathbf{q}_{\pi 1} \right) \left(\boldsymbol{\varepsilon}^{*} \mathbf{q}_{\pi 2} \right) + \left(\boldsymbol{\varepsilon}^{*} \boldsymbol{\cdot} \mathbf{q}_{\pi 2} \right) \left(\boldsymbol{\varepsilon}^{*} \mathbf{q}_{\pi 1} \right) \right] & \textbf{Requires spin flip} \end{array}$

where

A, B, C = form factors (assumed constant over phase space)

 ϵ', ϵ = polarization vectors of parent Υ , child Υ

 $q_{\pi i}$ = pion 4-vectors

- $\mathbf{E}_{\pi \mathbf{i}}$ = energies in parent Υ rest frame
- C term: large m_b strongly suppresses spin flip: expect it to be small
- B term has traditionally been neglected: NOT THIS ANALYSIS !
- 2 degrees of freedom take as $M_{\pi\pi}$ & $\cos\theta_X$

Results PRD 76, 072001 (2007)

Set C=0. Errors include systematics

Initial	Final	Re (B/A)	lm (B/A)
Υ	Υ		
35	15	-2.52 ± 0.04	±1.19 ± 0.06
25	15	-0.75 ± 0.15	0.00 ± 0.11
35	25	-0.40 ± 0.32	0.00 ± 1.10

B term essential to describe the data $\odot \pi^{+}\pi^{-}$ results consistent $W/\pi^0\pi^0$ • If C allowed to float in **3S→1S**: |B/A|=2.79±0.05 C=0 =2.89±0.25 C floats |C/A|=0.45±0.40 (<1.09 @ 90% CL)

Dipion Transition Conclusions

PRD 76, 072001 (2007)

• A different approach: use $M_{\pi\pi}$ & $\cos\theta_X$

- Challenging systematics (soft tracks in some important parts of phase space): use both $\pi^0\pi^0$ & $\pi^+\pi^-$
- CLEO-c $\Upsilon(nS) \rightarrow \pi\pi \Upsilon(mS)$ data are well described by a simple 2D fit to expected dependences
 - Double-peaked $M_{\pi\pi}$ distributions might not be so "anomalous" after all !

 $-\cos\theta_{X}$ distributions support underlying formalism

• However...

- Dubynskiy & Voloshin [hep-ph/0707.1272] argue that B/A cannot be constant over the Dalitz plot, & in this case Im(B/A) = 0, in conflict with the CLEO $\Upsilon(35) \rightarrow \pi\pi \Upsilon(15)$ result.
 - $\boldsymbol{\cdot}$ They propose using $\boldsymbol{\Upsilon}$ polarization information in the fit

• B-factory analyses of $\Upsilon(3S)$, $\Upsilon(4S)$, $\Upsilon(5S)$ $\pi\pi$ transitions could help shed more light on the matter

$\chi_{bJ} \rightarrow Open Charm$

- Unlike χ_{b0} & χ_{b2} , χ_{b1} cannot decay to 2-gluons on-shell
 - $\chi_{b1} \rightarrow g^* g \rightarrow q \overline{q} g$
- χ_{b1} expected to yield more open charm than χ_{b0} , χ_{b2}
- Investigate w/CLEO III
 - Select inclusive $\gamma,$ find # χ_{bJ}
 - Select inclusive $D^0 \rightarrow K\pi$, $K\pi\pi$, $K\pi\pi\pi$
 - Require p(D⁰)>2.5 GeV/c
 - Find # χ_{bJ} in such events
- First step is reproducing previous CLEO III results on B[Υ (nS) $\rightarrow \gamma \chi_{bJ}$]
 - Suppress fake photons w/shower shape
 - Suppress π^{0} decays by pairing with other $\gamma's$
 - Fit background, subtract, fit signal
 - Obtained same result: we have denominator for branching fraction
- Exploit RICH & dE/dx for K & π identification

1st Observation of $\chi_{bJ} \rightarrow Open$ Charm

- Plot E_γ for tagged D₀ near M_D
 - D-sideband subtraction
 - Smooth bgd subtraction
 - Fit using lineshapes from inclusive γ's
- >7 σ signals for $\chi_{b1}(1P)$, $\chi_{b1}(2P)$
- Correct for efficiency
 - Assume ρ₈ = 0.1 (non-perturbative model parameter) for p>2.5 GeV/c cut
- Subtract secondary sources of χ_{bJ}
- Correct for $\chi_{bJ} \rightarrow \Upsilon X$: quote B^{*}

B*($\chi_{b,T}(nP) \rightarrow c\bar{c} \times)(\%)$ Theory | $\rho_8=0.1$ $\chi_{b0}(1P)$: 13 ± 7 ± 2 5 6 al., arXiv:0704.2599v1 345 (1979) $\chi_{b1}(1P)$: 31 ± 5 ± 5 25 23 $\chi_{b2}(1P)$: 13 ± 4 ± 2 PLB 83, 12 8 $\chi_{b0}(2P)$: 8 ± 6 ± 1 5 6 al., 3arbieri, et $\chi_{b1}(2P)$: 19 ± 3 ± 2 25 23 Bodwin, $\chi_{b2}(2P)$: 1 ± 3 ± 1 8 12

Rare Decays of Bottomonium

1st Observation of $\Upsilon(2S) \rightarrow \eta \Upsilon(1S)$

• Y transitions via a single η or π^0 NOT yet observed

- By scaling from $\psi(2S) \rightarrow \eta J/\psi$ using QCDME (multipole expansion), Kuang [hep-ph/060144v2] predicts
 - − B[Υ (2S)→ η Υ (1S)] ≈ 7 × 10⁻⁴ PDG: <20 × 10⁻⁴
 - B[Υ(3S)→ηΥ(1S)] ≈ 5 × 10⁻⁴ PDG: <22 × 10⁻⁴

- ~same as Yan [PRD 22, 1652 (1980)]

• In 2005 CLEO-c reported the most precise determinations of $\psi(2S) \rightarrow \eta J/\psi \& \psi(2S) \rightarrow \pi^0 J/\psi$ using $J/\psi \rightarrow l^+l^- \& \eta, \pi^0 \rightarrow \gamma\gamma \& \eta \rightarrow \pi^+\pi^-\pi^0$: $B_{\eta} \sim 3.3\%$, $B_{\pi 0} \sim 0.13\%$

- What about Υ 's in CLEO III ?
 - 9.32×10⁶ Ŷ(2S)
 - Use Υ(1S)→ee & μμ
 - Need kinematic fitting for bgd suppression: χ²/dof < 10

$\eta \rightarrow \gamma \gamma Result$

Signal shown is ~4.6σ ● B[Υ(2S)→ηΥ(1S)] _{γγ} = $(2.32\pm0.74) \times 10^{-4}$ • $\Upsilon(1S) \rightarrow ee (7.3 \text{ events})$ $\rightarrow \mu\mu$ (7.2 events) give consistent B's B & significance are robust w.r.t. M(I^+I^-) limits, $\cos\theta_+$ cut, floating or fixed peak position ~20% relative systematic error, mostly from Bhabha suppression uncertainty Background level is

0.9±0.2 evt/MeV, consistent w/estimate

Υ(2S)→π⁰ Υ(1S)

 4 evts (3 ee, 1 μμ)
 6 bgd expected

 B[Υ(2S)→π⁰ Υ(1S)] < 1.6 × 10⁻⁴

 CLEO Preliminary

B. Heltsley QWG5@DESY, Oct 18, 2007

Next Steps: •Υ(3S) analysis •Add η→3 π^0 , η→ $\pi^+\pi^-\gamma$

- d=bound (pn)
- "Coalescence models" attempt to describe appearance in fragmentation
 - How often do p & n appear "close enough" in phase space to combine into d ?
- Studies from ARGUS [PLB 236, 102 (1990)] in $\Upsilon \rightarrow d+X \& ALEPH [PLB 639, 192 (2006)] in Z \rightarrow d+X$
 - Accommodated by string model of Gustafson & Hakkinen [Zeit. Phys. C61, 683 (1994)]
 - Appearance in Υ (ggg+ γ gg) vs γ^* or Z \rightarrow qq
 - Statistics-limited
- Experimental challenge is that d's can easily be produced in beam-gas and beam-material collisions
 - Look only for anti-d's
 - dE/dx in drift chamber
- Will present CLEO III data for inclusive <u>anti-</u>d's
 - Separate results for $\Upsilon\,$ vs continuum
 - For Υ(1S), rescale branching fraction to reflect DIRECT production from ggg+γgg : B^{*}
 - B. Heltsley QWG5@DESY, Oct 18, 2007

Normalized dE/dx for anti-d

- □ based on 58 events
- B (𝔅(4S)→dX) < 1.3 × 10⁻⁵
 □ based on 3 events
- B (γ→ qq→dX) < 1 × 10⁻⁵
 □ based on 4.5 events
- Hence $(ggg + \gamma gg)$ is about 3 times more likely than $\gamma \rightarrow q\bar{q}$ to produce deuterons
- How often is an anti-d compensated by a d as compared to (n, p) combinations?
 - We see roughly equal compensation by nn, np, pp relative to each other
 - ~1% of the time a d compensates
 - 3 d anti-d events observed

BSM Decays of Bottomonium

Decays to Invisible Particles

- Onia decays to undetectable particles are a window on physics Beyond the Standard Model:
 Dark matter candidate, χ?
 - $B(\Upsilon(1S) \rightarrow \chi\chi) = 0.41\%$ McElrath [PRD72, 103508 (2005)]
- New gauge bosons? Light gravitino? Fayet [PRD74, 054034 (2006)]
- vv via Z⁰ a very small potential background

 $\Upsilon(1S) \rightarrow \gamma$ + light Higgs

- Dermisek, Gunion, McElrath [hep-ph/0612031] add to the MSSM a non-SM-like pseudoscalar Higgs a₀ with m_{a0} < 2m_b "NMSSM"
 - "natural", avoids fine tuning
 - evades the LEP limit M_h>100 GeV since h→a₀a₀, but a₀→bb and LEP sought b jets
 - $a_0 \rightarrow \tau^+ \tau^-$ should dominate if $m_{a0} > 2m_{\tau}$
 - Should be visible in $\Upsilon\to\gamma\;a_0$

Experimentally, CLEO seeks monochromatic γ

- Use $\Upsilon(2S) \rightarrow \pi\pi\Upsilon(1S)$ tag to eliminate e⁺e⁻ $\rightarrow \tau\tau\gamma$ background
- Flag presence of τ pair with two 1prong τ decays (one lepton), missing energy
 - B. Heltsley QWG5@DESY, Oct 18, 2007

Conclusions

• M($\pi\pi$) distributions in Y(3S) $\rightarrow \pi\pi$ Y(1S), Y(3S) $\rightarrow \pi\pi$ Y(2S), $\Upsilon(2S) \rightarrow \pi\pi\Upsilon(1S)$ can all be explained via 2D fits using angular information without any "anomalies" • 1st Observation of $\chi_{b,T} \rightarrow Open$ Charm - B($\chi_{h1}(nP) \rightarrow open charm$) ~ 25%, consistent w/NRQCD (Preliminary) • 1st Observation of $\Upsilon(2S) \rightarrow \eta \Upsilon(1S)$ (Preliminary) - B[$\Upsilon(2S) \rightarrow \eta \Upsilon(1S)$] = (2.51±0.71±0.50) × 10⁻⁴ \bigcirc (ggg + γ gg) is about 3 times more likely than $\gamma^* \rightarrow q\bar{q}$ to fragment into deuterons (Preliminary) ● B[Y(1S)→Invis] <0.39% @90%CL • B[$\Upsilon(1S) \rightarrow \gamma a_0$]×B($a_0 \rightarrow \tau^+ \tau^-$) < ~10⁻⁴ for narrow a_0 with $M(a_0)=4-9$ GeV (Preliminary) New CLEO III bottomonium results continue to flow for common, rare, & BSM decays

Backup Slides

Basics of $\Upsilon(2S) \rightarrow \eta/\pi^0 \Upsilon(1S)$

- 9.32×10⁶ Ŷ(2S) produced in CLEO III dataset
- Use Υ(1S)→ee & μμ.
 - B~5% total (for J/ ψ , was ~12%)
- Use η, π^{0} → γγ & η→ $\pi^{+}\pi^{-}\pi^{0}$
- Unlike the ψ(2S) incarnation, here we need to exploit the improved resolution obtained from kinematic fitting:
 - constrain final state particles to the known center-of-mass 4momentum: χ²/dof < 10
- Require M(I⁺ I⁻) = [-20,+30] MeV around M[Y(1S)]
- Extract signal by looking for a peak in the
 - Mass of the $\pi^0 \rightarrow \gamma \gamma$ or $\eta \rightarrow \pi^+ \pi^- \pi^0$ candidate
 - Kinetic energy (KE) of the $\eta \rightarrow \gamma \gamma$: KE = $E_{\gamma 1}$ + $E_{\gamma 2}$ m($\gamma \gamma$)
 - Peak expected at ~15 MeV
 - Slightly better resolution than using the $\eta\mbox{-}candidate$ mass
 - due to an accident of the kinematics
 - partly compensates for calorimeter resolution effects
 - B. Heltsley QWG5@DESY, Oct 18, 2007

Backgrounds

- ►or η, π⁰→γγ:
 - $e^+e^- \rightarrow l^+ l^- \gamma \gamma$ (mostly Bhabhas w/2 extra showers)
 - MC estimate not practical nor reliable: large σ_{Bhabha}
 - Suppress with cosθ₊<0.5 (Bhabhas have e⁺ forward)
 - $\Upsilon(2S) \rightarrow \pi^0 \pi^0 \Upsilon(1S)$ with 2 asymmetric $\pi^0 \rightarrow \gamma \gamma$ decays
 - Dangerous due to large branching fraction (~9%)
- For $\eta \rightarrow \pi^+ \pi^- \pi^0$, we can't yet find any backgrounds
- Estimate the backgrounds in several ways
 - KE or mass <u>sidebands</u> in <u>on-resonance</u> data
 - For continuum backgrounds, use <u>below-Y(2S) data</u> where we have about a third of the on-Y(2S) luminosity
 - Here we have to define a "pretend" M[$\Upsilon(1S)$] mass window which reproduces the correct KE of the η
 - MC for $\Upsilon(2S) \rightarrow \pi^0 \pi^0 \Upsilon(1S)$ normalized to data
 - Scale MC prediction for leakage into the η signal by the observed number of fully reconstructed π⁰ π⁰ Υ(1S)

B. Heltsley QWG5@DESY, Oct 18, 2007

CESR

the presence of this term.