

A method to identify dynamicaly generated states

and its application to X(3872) and X(3875)

Christoph Hanhart

Forschungszentrum Jülich

In collaboration with

Yu. Kalashnikova, A. Kudryavtsev, A. Nefediev

Key references:

S. Weinberg, Phys. Rev. 130, 776 (1963); 131, 440 (1963); 137 B672 (1965).

V. Baru et al., Phys. Lett. B 586 (2004) 53; C.H. et al., Phys. Rev. D 76 (2007) 034007

The Idea

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Difference between bound states of quarks or hadrons?

Focus on resonances very near thresholds

non-rel. QM

Weinberg (1963)

Expand in terms of non-interacting quark and meson states

$$|\Psi\rangle = \begin{pmatrix} \cos(\theta)|\psi_0\rangle\\ \sin(\theta)\chi(\mathbf{p})|h_1h_2\rangle \end{pmatrix},\,$$

here $|\psi_0\rangle$ = quark state and $|h_1h_2\rangle$ = two-hadron continuum with $\langle \Psi | \Psi \rangle = 1$ and $\int d^3p \chi^2 = 1$. Let

$$\mathcal{Z} = |\langle \Psi | \psi_0 \rangle|^2 = \cos(\theta)^2$$

Equals probability to find the bare state in the physical state

 \rightarrow the quantity of interest!

Use Schrödinger equation to fix \mathcal{Z} . When can we make model-independent statements?

Coupled channels II

The Schrödinger equation reads

$$\hat{\mathcal{H}}|\Psi\rangle = E|\Psi\rangle, \quad \hat{\mathcal{H}} = \begin{pmatrix} \hat{H}_c & \hat{V} \\ \hat{V} & \hat{H}_{hh}^0 \end{pmatrix},$$

Note: \hat{H}_{hh}^0 contains only meson kinetic terms! Introducing the transition form factor $\langle \psi_0 | \hat{V} | hh \rangle = f(p^2)$,

$$\frac{\partial}{\partial E} \left\langle \underbrace{\mathbf{I}}_{\mathbf{z}} = \frac{1}{\mathcal{Z}} - 1 = \tan^2 \theta = \int \frac{f^2(p^2) d^3 p}{(p^2/(2\mu) + \epsilon)^2} = \frac{4\pi^2 \mu^2 f(0)^2}{\sqrt{2\mu\epsilon}}$$

for *s*-waves and ϵ smaller than any scale of problem; then it depends only on f(0)=effective coupling and binding energy ϵ \rightarrow model-independent!

Discussion

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

We can now define effective coupling; from scattering amplitude we get, using $8\pi^2 \mu f^2 = g = 2\sqrt{2\epsilon/\mu}(1/\mathcal{Z}-1)$

$$F_{MM} = -\frac{g/2}{E + \epsilon + (g/2) \left(\sqrt{2\mu\epsilon} + i\sqrt{2\mu}E\right)} + \dots$$
$$= -\left(\frac{1}{64\pi m_1 m_2}\right) \frac{g_{\text{eff}}^2}{E + \epsilon} + \dots \quad \text{(rel.-norm.)}$$

 $\rightarrow \frac{g_{\text{eff}}^2}{4\pi} = \mathcal{Z}8m_1m_2g$ $= 16(m_1 + m_2)(1 - \mathcal{Z})\sqrt{2\mu\epsilon} \le 16(m_1 + m_2)\sqrt{2\epsilon\mu}$

For bound state low E amplitude fixed in *hh* channel!

Picture not changed by far away thresholdBaru et al. (2004)Equivalent to, e.g.,Morgan and Pennington (1991), Törnqvist (1995)

Pole counting I

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

$g \text{ small} \longrightarrow \text{elementary state}; \text{ with } k = \sqrt{2\mu E}$

Pole counting II

Forschungszentrum Jülich

g large \longrightarrow molecule; with $k = \sqrt{2\mu E}$

Pole counting III

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

For weaker binding potentials: virtual state

Summary: the structure information is hidden in the effective coupling, adjusted to experiment, independent of the phenomenology used to introduce the pole(s)

Focus on light scalar mesons $f_0(980)$ and $a_0(980)$ poles located very close to the KK threshold $(2m_K = 992 \text{ MeV})$ \longrightarrow Binding energy $\epsilon \simeq 10 \text{ MeV}$ <u>IDEAL</u>

Our analyses for radiative decays $\phi \rightarrow \gamma s, s \rightarrow \gamma \gamma$ are

- \rightarrow consistent with molecular interpretation for f_0 ;
- \rightarrow less clear for a_0 ;

it either has non-molecular component, or is a virtual state

The X(3872) **vs.** X(3875)

Can signal in $D^0 \overline{D}^0 \pi$ (at 3875 MeV) and in $J/\Psi \pi \pi$ (at 3872 MeV) come from the same state?

We have

 $M_{X(3872)} - M_{D^0} - M_{D^{*0}} = -0.4 \pm 0.6 \text{ MeV}$ $M_{X(3875)} - M_{D^0} - M_{D^{*0}} = +4.0 \pm 0.7 \text{ MeV}$

Analysis tool:

Flatte analysis: $F_{ij} \propto (E - E_f - i/2 (g(k_1 + k_2) + \Gamma))^{-1}$

where

 $k_1 = \sqrt{2\mu_1 E}$ (for $X \to D^0 \overline{D}^{0*}$), $k_2 = \sqrt{2\mu_2 (E - \delta)}$ (for $X \to D^+ \overline{D}^{-*} + h.c.$), Γ for remaining inelastic channels ($J/\Psi \pi \pi$ and $J/\Psi \pi \pi \pi$)

C.H., Y. Kalashnikova, A. Kudryavtsev, and A. Nefediev (2007)

Results

Fits individually to Belle and Babar with different assumptions Here: Fit to Babar assuming non-interfering background

result in scaling regime:

 $g \rightarrow \lambda g; \ \Gamma \rightarrow \lambda \Gamma; \ E_f \rightarrow \lambda E_f \text{ does not change shapes}$

Baru et al. (2005)

bound vs. virtual state

Change pole position from virtual to bound state:

Summary/Outlook

- → Experiment can not distinguish bound and elementary state For both (almost) no signal in $D\bar{D}\pi$
- → If X(3872) is molecule or elementary state ($\bar{q}q$, tetraquark ...), X(3875) must be additional state

see talk by E. Oset and Gamermann and Oset (2007)

 \rightarrow Signal in $D\bar{D}\pi$ related to X(3872) only

if X(3872) <u>virtual state</u>

note:

then there must be same signal in $D\bar{D}\gamma$ with strength down by 38/62 (possibly different background?)

Side remark

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

virtual vs. bound state for η^3 He system:

Pole fixed from $pd \rightarrow \eta^3$ He;

red: virtual state; blue: virtual state; green: Im a > Re a Data: γ^{3} He $\rightarrow [\eta^{3}$ He] $\rightarrow \pi p...$ Pfeiffer et al. (2004), Calc.: C.H. (2004)