Inclusive Charm Production in Bottomonium Decays

Yu, Chaehyun (Korea University)

In collaboration with Hee Sok Chung, Daekyoung Kang, Taewon Kim, and Jungile Lee

International Workshop on Heavy Quarkonium 2007, Oct. 17-20, DESY, Hamburg

Outline

- Introduction
- $\chi_{bJ} \rightarrow c + X$
- $\Upsilon(nS) \rightarrow c+X$
- Fragmentation into charmed hadrons
- Conclusions

Introduction

• Little work on open charm production in decay of bottomonium has been done.

$$\begin{split} \Gamma[\Upsilon \to ggg^* \to c\bar{c}gg] & \text{and} \quad \frac{d\Gamma}{dm_{c\bar{c}}} & \text{Firtzsch, Streng, PLB77('78)} \\ \Gamma[\chi \to c\bar{c}g] & \text{and} \quad \frac{d\Gamma}{dm_{c\bar{c}}} & \text{Barbieri, Caffo, Remiddi, PLB83('79)} \\ & \Rightarrow \text{Infrared divergences.} \end{split}$$

•The problem of Infrared divergences was resolved by nonrelativistic QCD (NRQCD). Bodwin, Braaten, Lepage, PRD45('92); PRD51('95)

Why c+X?

- $\Gamma[\Upsilon, \chi_{bJ} \to LH]$ is not easy to analyze.
- An ideal testing ground of the color-octet mechanism.
- Previous works on inclusive charm production concentrated on the invariant mass distribution of the charm-quark pair.
- Recent runs at CLEO-III and B-factories have accumulated large data at $\Upsilon(2S)$ and $\Upsilon(3S)$ resonances.

 \Rightarrow Ready for studying open charm production in bottomonium decays.

 $\chi_{bJ} \rightarrow c + X$

Ref. Bodwin, Braaten, Kang, Lee, PRD76('07) [hep-ph/0704.2599]

5

Factorization formula for χ_{bJ} decay

The NRQCD factorization formula is expressed as

$$\Gamma[\chi_{bJ} \to c + X] = A_J(\Lambda) \frac{\langle \mathcal{O}_1 \rangle_{\chi_b}}{m_b^4} + A_8 \frac{\langle \mathcal{O}_8 \rangle_{\chi_b}^{(\Lambda)}}{m_b^2}$$

Distribution of charm-quark momentum

Short-distance coefficients

$$\begin{split} A_0^{(c)}(\Lambda) &= \frac{C_F \alpha_s^3}{N_c} \left\{ \left[\frac{2(2+r)}{9} \log \frac{8(1-r)m_b}{r\Lambda} - \frac{58+23r}{27} \right] \sqrt{1-r} + \frac{5}{9} \log \frac{1+\sqrt{1-r}}{1-\sqrt{1-r}} \right\}, \\ A_1^{(c)}(\Lambda) &= \frac{C_F \alpha_s^3}{N_c} \left\{ \left[\frac{2(2+r)}{9} \log \frac{8(1-r)m_b}{r\Lambda} - \frac{16+11r}{27} \right] \sqrt{1-r} - \frac{4}{9} \log \frac{1+\sqrt{1-r}}{1-\sqrt{1-r}} \right\}, \\ A_2^{(c)}(\Lambda) &= \frac{C_F \alpha_s^3}{N_c} \left\{ \left[\frac{2(2+r)}{9} \log \frac{8(1-r)m_b}{r\Lambda} - \frac{116+91r}{135} \right] \sqrt{1-r} - \frac{8}{45} \log \frac{1+\sqrt{1-r}}{1-\sqrt{1-r}} \right\}, \\ A_8^{(c)} &= \frac{(1+r/2)\sqrt{1-r}}{3} \pi \alpha_s^2. \end{split}$$

$$rac{A_0^{(c)}(\Lambda)}{A_8^{(c)}}\sim 1.6, \qquad rac{A_1^{(c)}(\Lambda)}{A_8^{(c)}}\sim 0.075, \qquad rac{A_2^{(c)}(\Lambda)}{A_8^{(c)}}\sim 0.49.$$

Matrix elements for χ_{bJ}

Lattice simulation	Bodwin, Sinclair, Kim, PRD65('02)
$egin{aligned} &\langle \mathcal{O}_1 angle_{\chi_b(1P)} = 3.2 \pm 0.7 \; \mathrm{GeV}^5, \ &rac{\langle \mathcal{O}_8 angle_{\chi_b(1P)}^{(\Lambda)}}{\langle \mathcal{O}_1 angle_{\chi_b(1P)}} = 0.0021 \pm 0.0007 \; \mathrm{GeV} \end{aligned}$	$ ho_8 \equiv rac{m_b^2 \langle \mathcal{O}_8 angle_{\chi_b}^{(m_b)}}{\langle \mathcal{O}_1 angle_{\chi_b}} = 0.044 \pm 0.015.$

Potential model (Buchmüller–Tye potential) $\langle \mathcal{O}_1 \rangle_{\chi_b(1P)} \approx 2.03 \text{ GeV}^5,$ $\langle \mathcal{O}_1 \rangle_{\chi_b(2P)} \approx 2.37 \text{ GeV}^5.$ Bodwin, Braaten, Kang, Lee, PRD76('07)

From the solution to the RG equation

$$\langle \mathcal{O}_8 \rangle_{\chi_b}^{(m_b)} = \langle \mathcal{O}_8 \rangle_{\chi_b}^{(\Lambda)} + \frac{4C_F}{3N_c\beta_0} \log\left(\frac{\alpha_s(\Lambda)}{\alpha_s(m_b)}\right) \frac{\langle \mathcal{O}_1 \rangle_{\chi_b}}{m_b^2}.$$

$$\Lambda = m_b v.$$

$$ho_8 \gtrsim 0.068.$$

Branching fractions

$\Upsilon(nS) \rightarrow c+X$

Kang, Kim, Lee, Yu, arXiv:0707.4056 [hep-ph] (To appear in PRD)

Factorization formula for Y(nS) decay

The inclusive charm production rate in Υ decay is

$$\Gamma[\Upsilon \to c + X] = C_1^{(c)} \frac{\langle \mathcal{O}_1(^3S_1) \rangle_{\Upsilon}}{m_b^2}$$

At leading order in v, the color-octet terms do not contribute to the decay rate.

Color-singlet contributions

QED contribution

The QED contribution can be estimated as

 $\operatorname{Br}[\Upsilon \to \gamma^* \to c\bar{c}] \approx N_c e_c^2 \operatorname{Br}[\Upsilon \to e^+ e^-] \approx 3\%.$

Color-singlet matrix elements for $\boldsymbol{\Upsilon}$

state	$\rm Phenomenology^1$	$Lattice^2$	Potential models	3 BKL ⁴
$\Upsilon(1S)$	3.6 ± 0.5	$3.95\pm0.43\ \sim1.84\sigma$	3.6 ± 1.8	$3.07\substack{+0.21 \\ -0.19}$
$\Upsilon(2S)$	1.5 ± 0.2	-	1.7 ± 0.6	$1.62\substack{+0.11 \\ -0.10}$
$\Upsilon(3S)$	1.4 ± 0.3	_	1.2 ± 0.5	$1.28\substack{+0.09 \\ -0.08}$
			•	a units of CaV^3

in units of GeV³.

Phenomenology : Braaten, Fleming, Leibovich, PRD'01. $\langle v^2
angle = rac{M_{\Upsilon(nS)}-2m_b}{2m_b}$

Lattice : Bodwin, Sinclair, Kim, PRD'02.

Potential models : Eichten, Quigg, PRD'95. (averaged by Braaten, Fleming, Leibovich).

BKL : see the talk by Bodwin. $\langle v^2 \rangle_{1S} = -0.009, \langle v^2 \rangle_{2S} = 0.090, \langle v^2 \rangle_{3S} = 0.155$.

Color-singlet matrix elements for $\boldsymbol{\Upsilon}$

	m_b	decay formula	$\langle v^2 angle$
BFL	$4.77 {\rm GeV}$	$\mathcal{O}(v^2)$	Gremm-Kapustin
BKL	$4.6~{\rm GeV}$	resummed to all orders in v	Generalized Gremm-Kapustin + Cornell potential

	$\langle v^2 angle_{\Upsilon(1S)}$	$\langle v^2 angle_{\Upsilon(2S)}$	$\langle v^2 angle_{\Upsilon(3S)}$	
BFL	-0.0084	0.051	0.085 (my estifrom BF	mates L's paper)
BKL	$-0.009\substack{+0.003\\-0.003}$	$0.090\substack{+0.011 \\ -0.011}$	$0.155\substack{+0.018 \\ -0.018}$	-

Distribution of charm-quark momentum

Branching fractions

The branching fractions from QED contributions are $1.5 \sim 1.7$ times larger than those from QCD contributions.

Fragmentation into charmed hadron

The charm quark hadronizes into one of charmed hadrons, such as D^0 , D^+ , D_s^+ , or Λ_c^+ or their excited states with a probability of almost 100%.

The hadronization can be expressed in terms of the fragmentation function $D_{c \rightarrow h}$

$$\frac{d\Gamma}{dy_h} = \frac{dz_h}{dy_h} \int_{z_h}^1 \frac{dz_1}{z_1} D_{c \to h}(z_h/z_1) \frac{dy_1}{dz_1} \frac{d\Gamma}{dy_1},$$

where z_1 is the scaled light-cone momentum of the charm and z_h is for the charmed hadron.

Fragmentation function Belle, PRD73,032002(2006)

Fragmentation	Form	Comments
function		
$Bowler^1$	$Nrac{1}{z^{1+bm^2}}(1-z)^a\exp\left(-rac{bm_{\perp}^2}{z} ight)$	best fit to the data
Lund^2	$Nrac{1}{z}(1-z)^a \exp\left(-rac{bm_{\perp}^2}{z} ight)$	
$ m Kartvelishvili^3$	$N z^{lpha_c} (1-z)$	in our analysis
$\operatorname{Collins-Spiller}^4$	$N\left(\frac{1-z}{z} + \frac{(2-z)\varepsilon_c'}{1-z}\right)\left(1+z^2\right)\left(1-\frac{1}{z} - \frac{\varepsilon_c'}{1-z}\right)^{-2}$	
${ m Peterson}^5$	$Nrac{1}{z}\left(1-rac{1}{z}-rac{arepsilon_c}{1-z} ight)^{-2}$	widely used,
		but worst agreement

- 1. Bowler, Z.Phys.C11('81).
- 2. Andersson, Gustafson, Soderberg, Z.Phys.C20('83).
- 3. Kartvelishvili, Likhoded, Petrov, PLB78('78).
- 4. Collins, Spiller, J.Phys.G11('85).
- 5. Peterson, Schlatter, Schmitt, Zerwas, PRD27('83).

Include feed-down from D*.

Momentum distributions for D⁺

Resummation of logarithmic corrections to all orders will cure unphysical negative rates near at the end point.

Color-octet contributions in Υ decays

22

Color-octet contribution

Conclusions

- We have provided the predictions for the branching fractions and charm-quark momentum distributions for inclusive charm production in bottomonium decays.
- In Υ (nS) decays, the virtual-photon contributions are about 1.5 times larger than the QCD contributions.
- The infrared divergences in $\chi_{\rm bJ}$ decays disappears by inclusion of the color-octet contribution.
- We have also provided the momentum distributions of charmed hadrons.
- The negative decay rate at the end point in $\chi_{\rm bJ}$ decays may be cured by resumming logarithmic corrections to all orders.

- The inclusive charm production rate in bottomonium decays may serve as a probe of the color-octet matrix elements phenomenologically.
- It will be interesting to check our leading-order predictions by comparing with the CLEO-III data.

Thank you!

Backup

Fragmentation function

Belle, PRD73, 032002(2006)

The Belle Collaboration has measured the charm quark fragmentation at 10.6 GeV, based on a data sample of $103 \, {\rm fb}^{-1}$.

A	В	Ratio
$D^{*0} + D^{*+} \ D^+_s \ \Lambda^+_c$	$D^+ + D^0 \ D_s^+ + D^+ + D^0 \ D_s^+ + D^+ + D^0$	$\begin{array}{c} 0.527 \pm 0.013 \pm 0.024 \\ 0.099 \pm 0.003 \pm 0.002 \\ 0.081 \pm 0.002 \pm 0.003 \end{array}$

where the ratios are defined by $\sigma(e^+e^- \to AX)/\sigma(e^+e^- \to BY)$ for the continuum sample.

These ratios imply that the direct production rate of D^+ from the charm quark is about 0.197, while that of D^{*+} is about 0.220. This escapes a naïve prediction for the ratio of the two rates.

Decay rates

TABLE I: Inclusive charm production rate $\Gamma^{(c)}$ and partial widths $\Gamma^{(c/g^*)}$ and $\Gamma^{(c/\gamma^*)}$ in units of keV for $\alpha_s(m_b) = 0.215$, $m_b = 4.6 \pm 0.1$ GeV, and $\langle O_1 \rangle_{\Upsilon}$ in Eq. (23). Uncertainties are estimated as stated in the text. The partial widths $\Gamma^{(c\bar{c}gg)}$ and $\Gamma^{(c\bar{c}g\gamma)}$ can be obtained by multiplying $\Gamma^{(c/g^*)}$ by factors $F_{\gamma}^{-1} \approx 0.982$ and $1 - F_{\gamma}^{-1} \approx 0.0184$, respectively.

state $\setminus \Gamma$ (keV)	$\Gamma^{(c/g^*)}$	$\Gamma^{(c/\gamma^*)}$	$\Gamma^{(c)}$
$\Upsilon(1S)$	1.47 ± 0.36	2.60 ± 0.65	4.07 ± 0.75
$\Upsilon(2S)$	0.83 ± 0.20	1.38 ± 0.34	2.21 ± 0.40
$\Upsilon(3S)$	0.68 ± 0.16	1.09 ± 0.27	1.77 ± 0.32

Momentum distributions

