Status of the polarimeters at HERA

Wouter Deconinck on behalf of POL2000

62nd Meeting of the DESY PRC October 23 – 24, 2006

Polarization in 2006

Since $e^- \rightarrow e^+$: higher polarization in longer fills.

Polarization in 2006: online efficiency

TPOL and LPOL continue to deliver high efficiency measurements.

LPOL/TPOL ratio problem

Strong disagreement LPOL and TPOL in first half of 2006

- Sparked a thorough check of both LPOL and TPOL systems
- Extensive physical inspection from laser system to calorimeter (during shutdown end of June)

LPOL/TPOL ratio problem

- In LPOL optics, mirror M3 was mounted backwards
- Multiple reflections with unknown circular polarizations Pcirc
- Measured LPOL polarization directly proportional to Pcirc.
- Installed in January 2006, corrected in June 2006

Now: agreement within systematics!

- LPOL unreliable during January June 2006
- TPOL data should be used for January June 2006

LPOL systematic studies

Continuous monitoring of hardware and systematics

- Laser polarization stable and symmetric for L and R
- Laser intensity, PMT high voltage do not affect measurement
- Beam position and slope at interaction point
- Artificial deviations of calorimeter alignment: no effect
- Agreement between crystal and sampling calorimeters
- ▶ No false asymmetries with unpolarized laser (< 0.5%)
- Visual inspection calorimeter on access days

LPOL system is stable

LPOL systematic studies: beam slope scan

- Move Compton cone by steering lepton beam
- Keep calorimeter in Compton cone: scan exit window

In allowed region [-5, 2.5] mm for x, no systematic effect on ratio

LPOL systematic studies: calorimeter table scan

- Keep Compton cone fixed (stable lepton beam and laser)
- Move calorimeter: Compton cone scans calorimeter front face

In allowed region [-5, 2.5/5.0] mm for x/y, no systematic effect on ratio

LPOL sampling calorimeter

- Calorimeter used for cavity project
- Cross check for LPOL crystal calorimeter (almost weekly)

Comparison

- Sampling calorimeter
- Within 2% of crystal calorimeter

TPOL systematic studies

Analyzing power variations = main uncertainty in TPOL system

- Distance between calorimeter and interaction point
- Transformation energy asymmetry (η) to vertical position (y)
- Absolute scale of analyzing power

Attempts to calibrate analyzing power differently

- Silicon detector in front of TPOL calorimeter (SiPOL)
- Rise time measurements

Re-evaluation of systematic uncertainty in progress ¹

- ► Focus correction: 0.35%
- Interaction region due to finite laser width: 0.3%
- Uncertainty in exact location interaction region: 2.0%

¹Internal note in preparation

TPOL: SiPOL for η/y transformation

Determine transformation energy asymmetry η to position y

- Blue band: correlated systematic uncertainty (very accurate!)
- Agreement with Monte Carlo
- ▶ Reproducible between *e*⁺ and *e*[−]

Work in progress by Blanka Sobloher

TPOL: SiPOL for absolute scale?

Use SiPOL to determine polarization independently

• Measures spatial distribution, no η/y transformation needed!

Broad distribution

- SiPOL not suitable for fast measurements
- No systematic difference

Work in progress by Vahagn Garibyan

TPOL: rise time for absolute scale?

Depolarize (stable) beam and measure rise time τ

- Only one measurement taken
- Theoretical uncertainties several percent (e.g. no flat machine)

3 parameter fit with Baseline

Calib.Const. k = 1.00983 \pm 0.057586 Rise Time τ = 1216.19 \pm 78.5825 sec Base Line P₀ = 6.02462 \pm 0.661366 χ^2 /ndf = 39.73/54 prob = 92.7% k calculated for P_n/ τ_n =89.1/2161.5 E_n=27.519GeV

Not the preferred way to determine absolute scale uncertainty

Cavity polarimeter

Hardware working fine now

- Using LPOL sampling calorimeter
- No problems finding beam or locking cavity

Regular data taking (weekly for approximately 1.5 hour)

data (binning changes at 15 GeV) with fit

Cavity polarimeter working, systematic studies ongoing

Cavity polarimeter: systematic studies

Systematic studies performed:

- L/R asymmetry of laser intensity: taken into account, resulting uncertainty is negligible
- Different detector models: uncertainty at per mille level
- Different blackbody radiation: uncertainty at per mille level

Statistical precision (for 4 s integration time)

- 2.5% per bunch
- 0.4% for all bunches

Cavity polarimeter: L/R asymmetries

October 13, 2006

Allow L/R asymmetry in fluxes

- no asymmetries allowed
- asymmetric bremsstrahlung
- asymmetric Compton flux
- asymmetric Compton flux and bremsstrahlung

Asymmtries L and R important!

Other stabilizing changes

• Integration time (4 s \rightarrow 20 s)

Cavity polarimeter: comparison with TPOL

Comparison

- TPOL measurements
- Cavity measurements
- Higher statistical precision! (0.4% error bars invisible)

Cavity polarimeter: future plans

Continue commissioning of the cavity polarimeter

- Finalize systematic studies
- Optimal integration time needs to be determined

Slowly increase data taking

- Collecting data about once a week now
- Longer data taking period on October 18 20
- Future:
 - More frequent data taking towards end of year
 - Extended data taking periods to check stability

Conclusions

LPOL

- LPOL / TPOL ratio problem solved
- Systematic uncertainty well under control

TPOL

- Progress in improved determination of analyzing power
- Re-evaluation of systematic uncertainty underway

Cavity

- Hardware steadily improving
- Regular polarization measurements
- Systematic studies in progress
- More frequent and longer data taking planned