Data Taking Physics Highlights Low Energy Running Summary

ZEUS Status Report

J. Ferrando

University of Glasgow On behalf of the ZEUS collaboration

62nd Physics Research Committee Meeting October 23rd, 2006

・ロト ・回ト ・ヨト

< ≣⇒

Data Taking Physics Highlights Low Energy Running Summary

1 Data Taking and Running

2 Physics Highlights

3 Low Energy Running Preparation

- 4 回 2 - 4 □ 2 - 4 □

Recent Running I

Data Taking Physics Highlights Low Energy Running Summary

Recent Running

- ZEUS gated luminosity as a function of days of running.
- Thank you for the excellent performance of HERA in 2006

3

Recent Running II

Data Taking Physics Highlights Low Energy Running Summary

Recent Running

- HERA were able to deliver more than 7 pb⁻¹ per week
- Recent ZEUS efficiency with HV on > 80%

ZEUS DAQ and detectors are operating well

Physics Highlights Physics Highlights Low Energy Running

Diffraction Heavy Flavour OCD Exotics

Completing HERA I measurements

Data Taking

Summarv

- New results in diffraction
- Measurements making strong use of new HERA II detectors:
 - D^+ lifetime
- Searches and measurements using data samples benefitting from large HERA II luminosity
 - D* cross sections
 - $\Box J/\psi$ helicity
 - CC DIS inclusive Jets
 - Isolated Leptons
 - Contact Interactions
 - Multilepton events
- Combined ZEUS + H1 work

HERA Combined NC Measurements Summary

High Q^2 Diffraction Heavy Flavour 0CD

Data Taking

Physics Highlights

- NC DIS results have been combined with those of H1.
- Enables investigation of the interference of weak and electromagnetic interactions at high Q^2

$$\tilde{\sigma}^- - \tilde{\sigma}^+ = 2\frac{Y_-}{Y_+} \left(-a_e \cdot kx F_3^{\gamma Z} + 2v_e a_e \cdot k^2 x F_3^Z \right)$$

We now have accurate combined measurements of the interference structure function $xF_{2}^{\gamma_{Z}} \Rightarrow$

HERA

HERA Combined NC Measurements Summary

Data Taking Physics Highlights High Q^2 Diffraction Heavy Flavour

HERA

In HERA II we now have access to Polarisation asymmetries:

$$A^{\pm} = \frac{2}{\mathcal{P}_R - \mathcal{P}_L} \cdot \frac{\sigma^{\pm}(\mathcal{P}_R) - \sigma^{\pm}(\mathcal{P}_L)}{\sigma^{\pm}(\mathcal{P}_R) + \sigma^{\pm}(\mathcal{P}_L)}$$

to a good approximation:

$$A^{\pm} \simeq \mp ka_e rac{F_2^{\gamma Z}}{F_2}$$

at large Bjorken-x

$$A^{\pm} \simeq \mp - k rac{1+d_v/u_v}{4+d_v/u_v}$$

At $Q^2 \approx 5000 \text{ GeV}^2 \delta A$ has a probability of 3.1×10^{-3} of being zero.

ZEUS

Data Taking Physics Highlights Low Energy Running Summary

Diffraction

High Q² Diffraction Heavy Flavour QCD Exotics

- 3 different methods used to tag diffraction: LRG, LPS, M_X
- Different methods measure slightly different processes

< ≣⇒

Diffraction M_x & LRG

Data Taking Physics Highlights Low Energy Running Summary High Q² Diffraction Heavy Flavour QCD Exotics

- Comparison of the same dataset with different methods
- 2 methods give slightly different values for some of the phase space
- Progress being made in achieving consistency and understanding remaining differences

< ≣ >

・ロト ・回ト ・ヨト

Diffraction LPS & LRG

Data Taking Physics Highlights Low Energy Running Summary High Q² Diffraction Heavy Flavour QCD Exotics

- LPS sample a low statistics analysis uncontaminated by proton dissociation
- Can be used to assess contamination of other samples (ratio 0.82 ± 0.01)

</i>
< □ > < □ >

< ≣⇒

DIS Charm at HERA II

Data Taking Physics Highlights Low Energy Running Summarv Diffraction Heavy Flavour

- Our first charm cross sections for HERA II, from D^* mesons
- HERA II and HERA I cross sections consistent with each other and NLO

D^+ lifetime with MVD

Data Taking Physics Highlights Low Energy Running Summary High Q² Diffraction Heavy Flavour QCD Exotics

Our first charm measurement based on MVD data.

- Measurement made possible by alignment work shown last PRC
- D⁺ signal significantly enhanced with significance cuts
- Production analysed in *ct* bins:

◆ □ ▶ ◆ 三

∢ ≣ ≯

$$ct = \frac{m}{p_T} I_{xy}$$

D^+ lifetime with MVD

Data Taking Physics Highlights Low Energy Running Summary High Q² Diffraction Heavy Flavour QCD Exotics

$$rac{dN}{d(ct)} \propto \int d(ct)_{true} \exp(-rac{(ct)_{true}}{c au}) \int d(rac{p_T}{m}) \; g(rac{p_T}{m}) \; h\left(rac{p_T}{m} \; (ct - (ct)_{true})
ight)$$

Resolution function h assumed to be a Gaussian with resolution of $160 \mu m$ + beam spot spread

	$ au(D^+)$ (fs)
ZEUS (prel.) 05	$1017\pm86\pm47$
World average	1040 ± 7

Similar accuracy to CERN SPS experiments Demonstrates our understanding of the MVD resolution

< 4 ₽ > < 2 >

æ

_∢≣≯

ZEUS

Data Taking Physics Highlights Low Energy Running Summary

James Ferrando

High Q² Diffraction Heavy Flavour QCD Exotics

$$\frac{1}{\sigma} \frac{\mathrm{d}^2 \sigma}{d\Omega \mathrm{d}z} = 1 + \lambda(z) \cos^2 \theta^* + \mu(z) \sin 2\theta^* \cos \phi^* + \frac{\nu(z)}{2} \sin^2 \theta^* \cos 2\phi^*$$

- Measurement of ν may allow distinction between colour-singlet and colour-octet models for J/ψ production
- Analysis of v as a function of z shows that ZEUS data seems to disfavour CS only picture

$$z = \frac{\mathbf{P} \cdot \mathbf{p}_{\mathbf{J}/\psi}}{\mathbf{p} \cdot \mathbf{q}}$$

ZEUS

14 / 33

< A > < 3

-∢ ≣ ≯

CC Jets at HERA II

Data Taking Physics Highlights Low Energy Running Summary High Q² Diffraction Heavy Flavour QCD Exotics

Our first HERA II Jet measurements:

- Test of SM
- Factor ×7 more e⁻p lumi than in HERA I
- Measurements were compared to e⁺p data
- Cross section in good agreement with SM expectations

CC Jets at HERA II

Data Taking Physics Highlights Low Energy Running Summary High Q² Diffraction Heavy Flavour QCD Exotics

Our first HERA II Jet measurements:

- Samples with different polarisation were compared
- Good agreement with expectations
- Inclusive jet sample is under control
- Now we can look at multijets and jet substructure in CC e⁻p data

・ロト ・回ト ・ヨト

< ≣⇒

- CI models describe the effects of:
 - Heavy leptoquarks
 - Additional heavy weak bosons
 - Large extra dimensions
 - Electron or quark compositeness

Contact Data Taking Physics Highlights Interactions Low Energy Running Summary CCD

Multi-Lepton Events

Data Taking Physics Highlights Low Energy Running Summary High Q² Diffraction Heavy Flavour QCD Exotics

- Production of di-lepton and 3-lepton events is sensitive to new physics, especially at high masses
- H1 have observed an excess at high invariant masses (3/0.44 ± 0.1 > 100GeV in ee channel)
- No excess observed in *ee* or *eee* channel by ZEUS

< E

Isolated Leptons

Data Taking Physics Highlights Low Energy Running Summary High Q² Diffraction Heavy Flavour QCD Exotics

Reminder

- At the last PRC ZEUS presented first isolated muon results for a W production optimised search (similar to H1 search)
 Search on 1998-2005 data (249 pb⁻¹, 143 pb⁻¹ e⁻p,
 - 106 $ext{pb}^{-1} e^+ p$) made preliminary for ICHEP06
- New for this PRC: Analysis has been extended to cover full HERA data taking period up to October 2006:

New Results

Data Taking Physics Highlights Low Energy Running Summary High Q² Diffraction Heavy Flavour QCD Exotics

Isolated e	$12 < p_T^X < 25 { m GeV}$	$p_T^X > 25 { m GeV}$
ZEUS (prel.) 96-97 e^+p (39 pb $^{-1}$)	2 /0.3 ± 0.2 (85%)	0 /0.5 ± 0.2 (62%)
ZEUS (prel.) 05-06 $e^- p$ (61 pb^{-1})	2 /0.9 ± 0.3 (52%)	2 /0.9 ± 0.3 (62%)
ZEUS (prel.) 03-06 e^+p (70 pb ⁻¹)	$1/0.8 \pm 0.2$ (64%)	$0/1.0 \pm 0.2$ (76%)

Isolated μ	$12 < p_T^X < 25 { m GeV}$	$p_T^X > 25 { m GeV}$
ZEUS (prel.) 96-97 e^+p (39 pb ⁻¹)	$1/0.3 \pm 0.2$ (84%)	0 /0.4 ± 0.2 (68%)
ZEUS (prel.) 04-06 $e^- p$ (187 pb^{-1})	2 /2.0 ± 0.3 (68%)	2 /2.0 ± 0.3 (86%)
ZEUS (prel.) 03-06 e^+p (70 pb $^{-1}$)	$2/0.9 \pm 0.2$ (64%)	0 /1.0 ± 0.2 (82%)

In 30 pb^{-1} 2006 e^+p data: 1 new *e* event and 1 new μ event, both with $12 < P_T^X < 25$ GeV.

イロト イヨト イヨト イヨト

Total Numbers

Data Taking Physics Highlights Low Energy Running Summary High Q² Diffraction Heavy Flavour QCD Exotics

Isolated e	$12 < p_T^X < 25 { m GeV}$	$p_T^X > 25 \mathrm{GeV}$
ZEUS (prel.) 96-06 e^+p (175 pb ⁻¹)	4 /2.1 ± 0.3 (63%)	1 /2.2 ± 0.3 (75%)
ZEUS (prel.) 98-06 $e^- p$ (204 pb^{-1})	$6/2.9 \pm 0.5$ (56%)	5 /3.8 ± 0.6 (55%)
ZEUS (prel.) 96-06 $e^{\pm}p$ (379 pb ⁻¹)	10 /5.0 ± 0.6 (59%)	6 /6.0 ± 0.7 (63%)

Isolated μ	$12 < p_T^X < 25 { m GeV}$	$p_T^X > 25 { m GeV}$
ZEUS (prel.) 96-06 e^+p (175 pb ⁻¹)	$3/1.9 \pm 0.4$ (71%)	1 /2.3 ± 0.4 (78%)
ZEUS (prel.) 98-06 $e^- p$ (204 pb ⁻¹)	2 /2.2 ± 0.3 (68%)	2 /2.2 ± 0.3 (86%)
ZEUS (prel.) 96-06 $e^{\pm}p$ (379 pb ⁻¹)	5 /4.1 ± 0.5 (75%)	3 /4.5 ± 0.5 (82%)

・ロン ・四と ・ヨン ・ヨン

Data Taking Physics Highlights Low Energy Running Summary High Q² Diffraction Heavy Flavour QCD Exotics

HERA Exotics Working Group

Members of the Working group focused on isolated leptons:

- H1: G. Brandt, C. Diaconu, D. South
- ZEUS: J. Ferrando, K. Korcsak-Gorzo
- Work has focused on trying to understand possible differences between H1 and ZEUS searches
- Common analysis region for future comparison has been agreed
- Managed to send first results (efficiency comparisons of existing searches) to ICHEP06

23 / 33

<ロ> <同> <同> < 同> < 同> < 同><<

Data Taking Physics Highlights Low Energy Running Summary

Data Taking Physics Highlights Low Energy Running Summary High Q² Diffraction Heavy Flavour QCD Exotics

	$e^{\pm}p$ Data Preli $P_T^X > 25$ GeV	minary	Electron obs./exp.	Muon obs./exp.	Combined obs./exp.
d_{+a}	H1 ZEUS	200 pb ⁻¹ 175 pb ⁻¹	$\frac{10 / 3.1 \pm 0.6}{1 / 2.2 \pm 0.3}$	$\begin{array}{c} 7 / 2.9 \pm 0.5 \\ 1 / 2.3 \pm 0.4 \end{array}$	$\frac{17/6.0\pm1.0}{2/4.5\pm0.7}$
•	H1+ZEUS	375 pb ⁻¹	$11/5.3 \pm 0.9$	$8 / 5.2 \pm 0.9$	19 / 10.5 \pm 1.7
d	H1	184 pb ⁻¹	$3/3.8\pm0.6$	$0/3.1 \pm 0.5$	$3/6.9 \pm 1.1$
I N	ZEUS	204 pb^{-1}	$5/3.8 \pm 0.6$	$2/2.2 \pm 0.3$	$7/6.0 \pm 0.9$
v	H1+ZEUS	388 pb ⁻¹	$8 / 7.6 \pm 1.2$	$2/5.3\pm0.8$	10 / 12.9 \pm 2.0

◆□ > ◆□ > ◆臣 > ◆臣 >

F_2 at High y

Data Taking Physics Highlights Low Energy Running Summary

 F_2 at High y e Efficiency Controlling γp background

Preparing for F_L by measuring F_2 at high y:

- Low x region: measurement can be performed only at HERA
- important for extracting the gluon density
- *F_L* contribution may be observed

Studies also valuable because they develop technology for measuring F_L :

- Studies of expanding measurement to lower *E_e*
- New Low *E_e* trigger (running since August 2006)

イロト イヨト イヨト イヨト

Low E *e* Efficiency

Data Taking Physics Highlights Low Energy Running Summary

 F_2 at High y e Efficiency Controlling γp background

- ZEUS F_L study → large systematic contribution from electron finding efficiency at low energies
- Efficiency of electron finder at low E_e has been evaluated using $J/\psi \rightarrow ee$ events.

Finding efficiency vs. E_{CAL}

<ロ> <同> <同> <同> < 同> < 同>

γp Background

Data Taking Physics Highlights Low Energy Running Summary

 F_2 at High y e Efficiency Controlling γp background

- γp is the main background for F_2 at high $y \ / \ F_L$
- A low E p_Z trigger was used to select a γp enriched sample

A ₽

< ∃⇒

Control Plots

Data Taking Physics Highlights Low Energy Running Summary

 F_2 at High y e Efficiency Controlling γp background

æ

・ロト ・回ト ・ヨト ・ヨト

- In 2006 ZEUS DAQ has been operating well
- In the last few months ZEUS has achieved efficiency consistently > 80%.
- HERA-II detector configuration undesrtanding progressing well, first fully MVD-based results arriving
- HERA-II physics analysis progressing well providing timely results
- Work on combined results progressing well, first results were already sent to ICHEP06 → Thanks to our H1 colleagues for a positive and effective collaborative effort
- ZEUS are addressing the challenges of Low-Energy F_L running with a strong and dedicated team. Benefits of studies also apparent for high-energy running results

・ロン ・回と ・ヨン