Measures Against Uncontrolled Proton Beam Losses in HERA

F. Willeke, MHE 11.12.2003

- Problem description
- Magnet power supply reliability
- Beam loss simulations
- Measures being taken: PS reliability, early alarms from ps, detection of beam loss and orbit
- Summary and out look
- Conclusions

Problem

If a power circuit of low- β quadrupole magnet power of the proton ring trips, beam losses occur before the safety systems can dump the beam

Reason:

- The beam loss set in 2-20ms after the trip
- The alarm signals are passed to the safety systems via a slow PLC or relays (>20ms delay)
- The beam loss monitors integrate for 5ms
- The signal processing time from the source to the dump is about 1 ms

Reason for recent frequent occurrences:

- The number of critical power supply circuit was increased from 6 to 14 after the luminosity upgrade
- Due to unforeseen technical problems during the last shutdown the set up time for the power supplies was reduced to a minimum in order to mitigate the impact on the schedule

Critical Power Circuits

Before the Upgrade: QS, QR Circuits in HERA E, N, S

After the Upgrade: QS, QR Circuit in HERA E

GM, GN, GA, GB, QR Circuits in HERA S,N

Power Circuit data (Source W. Kook, MKK)

Name	L/mH	$R/m\Omega$	L/R/ms	MFBF/h*)	count	magnets
QS	1000	1446	691	10000	1	6 x QS+ 2 x QR
QR	1100	1223	899	10000	1	6 x QR
GM	400	387	1034	5000	2	4 x GM
GN	60	365	162	2104	2	6 x GN
GA	972	1854	524	6154	2	$2 \times GA + 4 \times GB$
GB	300	649	462	5000	2	2 x GB
QR10	400	868	460	5000	2	4 x QR
QR14	400	858	466	1818	2	4 x QR

Total Trip Rate (*)averaged over Jan01-Nov03) : $1/265h \rightarrow 20$ trips/year (vulnerable for 60% of the operation time of 300 days/year

Analysis of beam losses

Simulated Beam loss after trip for 6s aperture and 0.5 mm initial offset

Measured and calculated loss after trip of GA

Green: Beam current monitor (Horn-type, sampled, ACCT)

Red: Calculations

Parameters assumed for calculation: aperture limit at 7s, initial orbit in magnets 0.3mm

Comparison of measured and calculated beam loss after trip of GA circuit

Synopsis Simulation

assuming BPM and BLM being complementary

.001

t gn

^t ga_j ^t gb_j ^t gm_j ^t qr_j

.0001

- .001

BPM Alarms detectable 100µsec before loss

Z _{orb} [mm]	Trips detected	Probability
1.5	42%	42%
1.0	42%	22%
0.75	28%	15%
0.50	14%	17%
0.25	14%	4%

Threshold at 3mm

→ 34 % of all trips detectable by BPM

BLM alarms detectable before loss >10%

	•	
a/o	detected	Р
10	28%	20%
8	43%	20%
7	100%	50%
6	100%	10%
5	100%	0%

→ 75% of all trips detectable by BLM

83% of all alarms detectable by combined BLM & BPM alarms

MKK Preventive Maintenance

- Checks 14 PS on maintenance days: mechanical anomalies, connections, measurement
- signals, sensitivity to mechanical tests (klopftests) done on Dec 4
- Check of water cooling system done on Dec 4
- Checks all ps after shutdown: mechanical abnormalities, connections, measurement-signals, sensitivity to mechanical tests (klopftests)
- Tightening screw terminal during upcoming maintenance days, repeat each shut down
- Check PS with infra-red camera once per year
- PS supply database will include data of failures, special incidents and activities
- Automatic redisplay of previous failures in case of a new failure at operator console
- Weekly checks of unusual noise, appearance by shift crew
- More time for maintenance after maintenance days and shut down needed!
- Logging of magnet PS performance data (voltages, etc) for early recognition of anomalies
- ALL Power supply regulations checked once per
- •Regular checks of PSC by the service
- Improvements of PS regulation to reduce sensitivity to
- •Prevent repeated resets without checks

Faster Power Supply Alarms

PS Alarm Paths

new

Faster Dump by replacing slow electronics

Achieved by faster opto-coupler

Test of BPM Alarms Thursday, Nov27, 2003

Test with 2mA Protons in 10 bunches at 920Gev using Luminosity Optics

Method: Switch of the GA-Power supply in HERA North (turning of pulsecontrol)

In each Quadrant 8 consecutive BPM's in both planes (hor. & vert.) activated Test 1: 'Alarm Threshold 57 bit @ +6.5mm, -3.8mm Test 2: 'Alarm Threshold 37 bit @ +3.5mm, -2.1mm

Orbit values in low β -Quadrupoles North: x = 2..4 mm

y = 1...3 mm

➔ kick ~0.1mr for 100% reduction in Magnet current @ 33mm orbit in the arc, 5mm orbit after 14% decay of magnet current

<u>**1**</u><u>st</u> <u>**Test:**</u> Threshold at 6.5mm,-3.8mm : **HERA-p Beam Current** red: DCCT, Green: Horn Monitor

1st Test

💐 Archiv	e Alarm	Analy	sis				×
Print 3-D Chart Error List Help!?							
Which BLMs Triggered The Alarm? Start Search/Test Criteria Start Search/Test Criteria Start+Stop Bins: Threshold: BLMs Found 4 Ratio of Test to ALRM Threshold 19 After Dump 1 1.00 Archive: 27-Nov-2003 19:18:28 920 GeV							
BLM	ALRM	-4	-3	-2	-1	Dump?	1 🔺
WR604	128	0	0	0	0	148	0
WR322	128	0	0	0	0	155	4
SR065	4096	0	0	0	548	8786	9385
SR061	4096	0	0	0	736	6868	10005
SR048	4096	0	0	0	49	3759	9184
SR036	4096	0	0	0	0	2805	10579
SR021	4096	0	0	0	0	3087	8973
SL021	4096	0	0	0	0	278	5572
SL274	128	0	0	0	0	261	23
SL369	128	0	0	0	9	149	0
NR061	4096	0	0	0	0	742	5033
NR021	4096	0	0	0	272	5071	1245
NL015	4096	0	0	0	137	3974	5480
NL021	4096	0	0	0	517	7788	4162
NL036	4096	0	0	0	295	6107	2278
NL274	128	0	0	0	0	171	10 💌

Dirty dump with activations

Beam Orbit Summary immediately before Dump

Last 1024 Turns (20 ms) OL347 / OL323 16Threshold (mm) at a la Х Beam Dump Shut-off 10 Loss TUT (uuuu) GA-North -5.8ms ≻ 600 200 800 200 41 lims

<u>**2**nd</u> <u>**Test**</u> Threshold at 3mm,-2mm : **HERA-p Beam Current**

red: DCCT, Green: Horn Monitor

Fast Magnet Current Decay Alarm

Idea:

Measure PS voltage (expect large change in cae of a trip, large signal) generate quasi-current decay signal by using an equivalent circuit To replace the current decay measurement (small signals, large errors)

<u>Status</u> :electronics design in progress Electronics prototype in progress First tests in January Ready in February

Fast Beam Current Decay Monitors

Two versions:

ACCT monitor based (M. Werner)

Existing monitor for beam loss trigger system used Has been observed for 2 weeks: no false alarms Monitor being tested in hall West

Expected to be available by Dec 17

Measures Taken to avoid Uncontrolled Beam Loss

Measure	Status	Reduct. Incidents	availa	available comments	
Preventive maintenance of PS	started, in progress	2	now	no trip for 1000h	
Delay PS shut-off at failure	done	1.	now	5% of trips av.	
Fast PS alarms bypassing plc	test in progress	4	Jan-Fe	br 04	
PS Current Decay Alarm	in preparation	2	Febr 04	4	
Speed up alarm loop 200µs	test in progress		Febr 0	4	
dump trigger 600 → 30 m	done		now		
Enable&integrate BPM alarm te	st done, integration in p	rogr . > 3 *2	Dec18	/ Jan 04	
Beam Current Loss alarm	test in progress, enab	led Dec 15	Dec 18	}	
Fast Scintillator BLM HERA N	in preparation		March	04	
Shorter Integration time of BLM	canceled)			
TTF- type beam loss monitors	canceled				
Collimators closer to the beam	preparations in progres	ss 1.2	Dec 18	}	
Additional shielding N, S, E, W	under investigation	?	Nov 04		
Previous incident rate:		20 ev	ents / y	ear	
Estimated incident rate	3 even	3 events / year			
Estimated rate for Nov	4 events (coll. Op	en) 1.5 ev	vent / y	ear	
Estimated final incident	rate	0.2 e	vents / v	year	
			•		

Conclusion

Incident rate of uncontrolled beam losses of protons increased by increased number of critical circuits, new power supplies and limited time allocated for maintenance

Reasons for these losses are well understood

Efforts are being made to avoid trips of the low beta quadrupole by an aggressive preventive maintenance program

Beam losses can be modeled and are in reasonable agreement with measurements.

Modeling of losses suggest that uncontrolled beam losses are best avoided by fast alarms of the power supply \rightarrow highest priority

Signals from beam measurements (BPMs, BLM) will provide additional safety in conjunction with the now speeded-up dump and alarm system.

Tight Collimator settings will help to get early beam loss signals

Additional shielding should help to reduce radiation dose in case an event occurs despite all efforts

→ Propose to return to high intensity protons by Dec 17