Polarization at HERA-*e* Status and Plans

15.03.2005

Mathias Vogt (MPY) for the HERA Polarization Team*

- $\bullet\,$ Polarization tuning after switching to e^-
- The helicity asymmetry ???
- The beam-beam effect
- Further improvements

1

*: D.P.Barber, M.Vogt

IFF	RA-I				
	$\langle achieved \rangle$	theory			
		incl.misalgn, <mark>[w/o Bl</mark>	B]		
P	50-60%	65–70%			
IEF	RA-II : e ⁺		·		
	achieved/all/	achieved/all/	theory	/	
	$+++/e^{+}$	$/e^+$	incl.misalgn&so	,[w/o BB]	
P	35–40%	40–50%	57%		
IEF	RA-II : <i>e</i> ⁻				
tar	t-up with +	++ 12.04			
2.0	2.05 : switcl	n to — — —			
	achieved/all/	achieved/pil	achieved/all/	achieved/pil	theory
	$+++/e^{-}$	$+++/e^{-}$	$/e^{-}$	$/e^{-}$	incl.misalgn/, <mark>[w/o BB]</mark>
P	35–40%	50-55%	30-35%	50-57%	57%
	less beam-beam $(I_n^{ ext{bunch}})$		more beam-beam $(I_n^{ ext{bunch}})$		

• *I_e*, TPOL-pilots-5min, TPOL-coll-5min

• *I_e*, TPOL-pilots-5min, TPOL-coll-5min

- Both with helicities : (-, -, -)
- 05.02. : before bump scans
- 15.02. : after first round of bump scans
- $\Rightarrow E_{dip} \rightarrow 27.628 \text{ GeV}$
- \bullet . . . as expected from (+,+,+) & theory

Helicity Asymmetry

• At the moment effect appears to be gone !

	ZEUS	H1	HERMES		
first:	+	+	+	$P^{ m pil} > 50\%$, $P^{ m col} > 35\%$	problem seems
	_	_	_	$P^{\rm pil} > 50\%$, $P^{\rm col} > 30\%$	gone

- but need more (run) statistics !
- if problems come back
 - 1. Rotator settings : Which IR is giving us trouble ???

	ZEUS	H1	HERMES
if new		+	_
trouble	+		_

- 2. Vary rotators (BF/BG) NL/NR \leftarrow H1-Sol/GO overlap
- 3. Vary rotators (BF/BG) NL/NR \leftarrow ZEUS-Sol tilt ?
- 4. New Ideas ?
- 5. Simulations : Tilted solenoids \rightarrow (MB-MapGen, Slim/Slick/SITF, SLICKTrack)

OUR LARGEST PROBLEM : BEAM-BEAM

 \Rightarrow

- scan 22.02.05 : *e*-only run
- With electrons on protons : tune shift positive
- ⇒colliding bunches have higher tunes
- plus beam-beam nonlinearity
- and beam-beam increased w.r.t. HERA-I
- **BUT** : more space in spin-orbit resonance diagram when tunes are small
- (density of low order resonances at $\stackrel{\sigma}{\searrow}$ $\nu_0 \approx 1/2$ is smaller if Q is closer to the integer)

- $x: 2-nd and 3-rd satellite interchanged & sum \rightarrow difference$
- y: coupling resonance and 4-th integer "interchanged"
- Electrons : beam-beam tune shift pushes tunes of colliding bunches up towards integer
- **Positrons** : beam-beam tune shift drags tunes of colliding bunches **down away from integer**

Running below the Integer ???

- Complete new set of electron files needed
 ⇒inj & lum : OK [E.G.-W.] / zwi on its way
- Beam-beam collective effects : during ramp, in case of insufficient separation : Q^e_y + Q^p_y →sum resonance →potentially more dangerous ⇒to be checked
- \leftarrow if bad : Can we also run with HERA-p below the integer ??? \Rightarrow major effort
- Resistive Wall instability below integer ⇒to be checked
- Technical issues : e.g. feed back, HTC, $\ldots \Rightarrow$ to be checked
- Synchrotron satellites change from sum to difference : strengths still comparable?
 ⇒OK [F.W.]
- If all of the above is checked and settled : Needs at least a week to tune up operations with "mirror" tunes
- This is not just two machine shift after a maintenance day !
- and then: How much is tune shift and how much is non-linearity?

- Need to redo experiment with one simple modification : set non-colliding tunes to incoherent tune of colliding bunches $\Delta Q^{\rm incoherent} \approx 2\Delta Q^{\rm coherent}$
- ... plus really non–linear radiative spin–orbit tracking \Rightarrow

Polarimeters and Tools (1)

- TPOL: rise–time fit →thanks a lot!
- Manually triggered average in TPOL-Monitor rise-time-fit display
 →even more thanks !
- 10.03.05 : Cavity-LPOL saw first Comptons → Congratulations !
 We put a lot of hope into this new polarimeter !
- Depolarization kicker should be commissioned ASAP ! (one recent attempt failed due to a technical problem with the amplifier)

Summary

- If enough time and care is spent on optimization, and operation is sufficient stable & reproducibility, then the achieved polarization is not too far from what can be expected for HERA-II with
 - 2 uncompensated solenoids and increased beam-beam
- in particular the helicity asymmetry appears to be gone
 ←alignment and setting of rotators and solenoids seem to be off the hook...
- The remaining top issue is **beam–beam** : mainly tune shift plus probably some residual non–linear effects
- We pursue the prospects of a new set of electron optics with tunes **below** integer
- However, several issues with these tunes have to and will be addressed
- Even after the feasibility of the "mirror tunes" has been proven, a non-negligible operational effort is needed to establish luminosity operation with these new optics
- Further Improvements :
 - new cavity-LPOL made first big step !
 - depolarization kicker business not yet satisfactory but experts from both M & F are working on it.