Sutete IH

YSAC , Iztiq IsingC

HERA coordination meeting, 23.4.2004

- Luminosity running and backgrounds
- First HERA II physics results
- suel9 •

Luminosity running

Yoneicifte egiciency

- Spread from 65 to 90% due to trips from background spikes.
- Points around 50% due to fills
 with long periods of 'spiky' conditions.
- Chamber trips are always
 Correlated with spikes in scintillator rates.
- Both beams contribute.
- Spiky e beams can often be cured
- Trip recovery now done more duickly by computer, with strict limits.

$^{-9}$ bns $^{+9}$ rot $_{\circ}I$ ev voisions VH these $^{+}$ and $^{\circ}$

- HV turn-on procedure and initial steering period cause losses at highest $I_{\rm e}$.
- An automatic procedure was implemented recently.
- Stable conditions are required to profit from highest luminosity.
- e^{-p} operation in 1998/1999 Am 82 avote tabove 28 mA.

Chamber current

The improved conditions from
 Feb 2004 have been almost
 maintained in March and
 April.

- Stable chamber operation at $I_e \cdot I_p = 40 \cdot 90 \, \mathrm{mA^2}.$
- HV now follows pressure variations to stabilize gain. $g \sim p^{-5}$, $\pm 30 \,\mathrm{mbar}$ used to cause $\pm 15\%$ gain and current variations.

Db 50/0t/500t 08.10.36

Expected chamber current $e^+ p$ and $e^- p$

- e-gas unchanged, with proper
 collimator setting.
- p-gas increases by 15% due to higher photon flux, causing photodesorption.
- At $I_e \cdot I_p = 50 \cdot 105 \text{ mA}^2$ expect 220 μ A with e^+p . 190 μ A with e^+p .

DF 22/04/2004 13.32.47

Polarised $e^{\pm}p$ charged current cross section

- The charged current e^+p cross section is measured by H1 with 5.8% statistical and 4.8% systematic error at $33\pm2\%$ right-handed polarization.
- For P = 0 it has been measured at HERA I with 2.7% statistical and 4.3% systematic error.
- It is consistent with the Standard
 Model expectation.
- We now take data with left
 handed polarization.
- High polarization improves
 Significance.

II AAAH mort Tq gaissim bas notqel Tq dgid betalosi dtiw staeva

$$p_T^e = 37 \text{ GeV}, \ p_T^{\text{miss}} = 44 \text{ GeV}, \ p_T^A = 29 \text{ GeV}.$$

noitudinteib $_X^T q$

 P_{T}^{X} (GeV) 0 10 50 30 40 20 <u>60 10 8</u> 20 **08**]0l Events **Isngiz** N_s = 2.1±0.3 E = N Second N IIA (.milərq) stad fH slannedɔ μ bns a 01 ($^{\Gamma}$ dq Γ t) II AA3H is steats at HERA II ($17~pb^{2}$

.noitouborq W lear ylniem ei lengil M2

- H1 observes 3 events in $e + \mu$ channels in 17 pb⁻¹ of HERA II data, expecting 2 ± 0.3 .
- H1 observes 2 events with $p_T^X > 25$ GeV, expecting 0.6 ± 0.1 .
- In 105 pb $^{-1}$ e^+p data from 1994– 2000 H1 observed 10 events with $p_T^X>25\,{\rm GeV},$ expecting 2.9 $\pm0.3.$
- This channel needs to be investigated with highest e^+p luminosity before the 'discovery window' closes.

High luminosity physics program 4⁺9

- d
 a Λue
- Substructure, contact interactions.
- Large extra dimensions.
- Precision F_{2} , u density at high x.
- ${\mathbb G}_2$, parity violation, d/u at high x.
- Pentaquark spectroscopy.
- QCD tests with jets, charm, beauty.
- . Diffraction, DVCS, low x physics.

 $d_{-} \partial$

- F = 2 leptoquarks.
- Excited neutrinos.
- .b,e,d dtiw yeu2 •

- Clarify isolated high p_t leptons.
- Clarify multi-electrons.
- F = 0 leptoquarks.
- d density from charged current.
- Searches: RPV stop, SUSY with c, u.

 $d_ \partial \text{ pue } d_+ \partial$

- $\cdot^0 Z$ of sgnilquop b bne u ullet
- Valence density at 'low' x from $xF_3.$
- DVCS charge asymmetry.

 $^{d}\!\mathcal{I}$ pəənpəy

• E^{Γ}

. səitiznəb x dgiH ullet

Future running

- Collection of high luminosity and clarification of the anomalies observed in e^+p scattering are of highest priority in the H1 physics program.
- Therefore, H1 would like to collect 300 pb⁻¹ in continued e^+p running.
- The H1 collaboration is ready to operate the detector beyond the end of 2006 and wants to complete the original HERA II program including e^-p and low energy running.

Shutdown Summer 2004

- Upgrade of the FPS Roman pot moving system at NL 61, 80, and 90 m.
 Upgrade of the FPS Roman pot moving system at NL 61, 80, and 90 m.
- Repair of a few EM Spacal cells.
- Repair of the Central Silicon detector (1/4 dead) would require a 10 week shutdown and is not requested. Spare components are available, if the shutdown is extended otherwise.
- Repair of a few channels of the CIP chamber would require 11 weeks and is not requested. It could be performed on short notice.