

HERA-B

M. Medinnis HERA Coordination Meeting 26 Sept 2002

Calorimeter

Pad chamber occupancies

• System is stable (no new 'dead channels' since January'02)

Inner Tracker

Training program (all stations) to be completed in October

Tracking, Resolution, Alignment

Resolution \approx 5% better than best of Y2k run.

M Medinnis

First Level Trigger

FLT status:

- Regular parasitic running
- Track efficiency: 30 70% (average 50%)
 - improving: checking alignment, optical links
- $\Rightarrow \geq 75\%$ efficiency for J/ ψ in planned 1-track trigger mode
- 1-track mode commissioning starts this week.

5x higher rate than in y2k run, each channel.

A big thanks to HERA for having provided the needed running time with conditions ranging from usable to excellent.

Projected Rates

	e⁺e-		$\mu^+\mu^-$	
Observed rate J/ ψ / hour		110		110
target rate (mainly $60 \rightarrow 180 \text{ bx}$)	×5	550	×5	550
FLT eff (1 track)	×.75	412	×.65	360
Other improvements	×1.2	500	×1.3	460
Add I TR	×1.5	750	×1.4	640
Total rate	1400 J/ψ / hour			

<u>To Do</u>

- Nothing: VDS, OTR, RICH, ECAL
- ITR: finish training (mid-Oct, depending on beam)
- Muon: repair work: 2 x 16 hours access
- FLT links: repair failed links: 2 x 16 hrs access
- Integrate & optimize trigger: 1 FLT track + 2 SLT tracks, both pre-triggers. do while(not optimized) {setup, take data, study;} Best: setup time: several hours, data: 4-8 hours, study: a few days. Several iteration cycles.

2002 Physics program

 $\approx \sigma(bb)$ to better than 15% (the systematics limit.)

- # J/ψ, ψ' suppression vs. x_F -- new: measure in backward hemisphere. Expected statistics comparable to best Fermilab experiment (E866)
- **First measurement** of χ_c suppression, also vs. x_F .

Draft plan: implications

- % 7 weeks for e/p running 2days/wk = 5 weeks. (ε_{HERA} ≈ .5)
- % 3.5 (+1?) week 2 day/wk dedicated HERA-B running. (ε_{HERA} ≈ .75?)
- Equivalent to 5 + 2.5 x 1.5 = 8.75 weeks of "normal" operation.
- % = 27% of promised run time.

If HERA does deliver this and if we achieve 1400 J/ ψ hour and if running efficiency does not suffer from the highly compressed run time we can do the planned measurements with 2x larger errors – still meaningful, except that the ψ' measurement becomes marginal.

Taking data now is urgent:

- HERA-B was approved for an 8 month production run, planned to start on May 1, 2002, i.e. to stop by ≈ end 2002.
- Meanwhile, four key groups announced that they will be unable to maintain their systems after the shutdown.
- Loss of post-doc manpower & know-how is inevitable.
- * We will be unable to run after the shutdown unless we attract new groups to operate \geq 3 important systems.
- Not easy! Without meaningful physics data before the shutdown, impossible.
- Nonetheless, there is still keen interest from several institutes to continue: we will try.
- (Analysis assured: 19 students and several post-docs need data for theses, CVs.)

27-Sep-02

M Medinnis

Setup:

- $\gg \geq$ few shifts per week for \geq 5 weeks, some with 180 bunches
- 2 x 16 hour access days in October before production run.
- One fill with magnet off in late October (ITR alignment).

Production:

- As much target time before the shutdown as possible.
- 180 bunches.
- Stable, continuous running: no breaks, frozen & conservative machine parameters. Minimal interruptions for machine studies.
- HERA-B priority during production run: i.e. HERA-B = coordinating exp.

HERA-B needs data now.

- Last chance for excellent physics from 10 years of effort.
- A prerequisite for any program after the shutdown.