H1 Status

E.Elsen

H1 Collaboration

Topics

- Status of Detector
- HERA II Startup
- e⁺p vs e⁻p

Status of Detector

Components

- all critical components in place
- Central Inner Proportional Chamber (CIP) being commissioned

Backgrounds

see largely increased rate of synchrotron radiation in SpaCal

 chamber rates prohibitive even at low gas gain (some BPC wires destroyed)

Future Components

HERA long term shutdown planning needed, i.e. 2002/3 shutdown

HERA II Startup

Goals of HERA II

- integrated luminosity (1 fb⁻¹) at the highest CM energy
- polarised beams
- some luminosity at lower Ep

Short term Strategy

thorough understanding of

- beam optics
- beam positions/tilts
- backgrounds in particular safe handling of synchrotron radiation at high currents

to enable

smooth long-term operation

. . .

...from the Minutes of the HERA Coordination Meeting 14.5.01

There was a discussion whether one week of HERA operation with high luminosity (about 4*10³¹ cm⁻² s⁻¹) would be sufficient before switching to electrons. The decision of the switch over date was postponed until the next meeting. H1 Proposal for Running in 2002

- continue e⁺p running till end of running period 2002
- change to e⁻p operation in winter shutdown 2002/3 and then integrate a large luminosity in e⁻p

Reasons

- step wise learning curve for machine and experiments
- well matched physics time profile

Anticipated Results from Upgraded HERA at Summer Conferences

Parity Violation in NC

Genuine Parity Violation in γZ

- best observed in G₂ (sister of F₂)
- example:

e⁺p only, 2* 50 pb⁻¹ at P=0.5

Polarity / Polarisation Matrix for BSM Physics

model	beam	best polarization	
	charge	left	right
right handed	e^{-}	-	$e_R^- \rightarrow \nu_R$
currents (CC)		-	(W_R)
SUSY	e^+		$e^+_R ightarrow$
R_P Violating			$\bar{u}_L, \bar{c}_L, \bar{t}_L$
	<i>e</i> ⁻	$e_L^- ightarrow \ ar{d}_R, ar{s}_R, ar{b}_R$	
anomalous top	e^{\pm}	$t_{L,R}$	
F = 0	e^+	$S_{1/2}, V_0$	
Leptoquarks		$e_L^+ \to \overline{V_0^R}$	$\begin{array}{c} e_R^+ \rightarrow \overline{V_1^L} \\ e_R^+ \rightarrow \overline{\bar{S}_{1/2}^L} \end{array}$
F = 2	e^-	$S_0, V_{1/2}$	
Leptoquarks		$\begin{array}{c} e_L^- \rightarrow S_1^L \\ e_L^- \rightarrow \bar{V}_{1/2}^L \end{array}$	$e_R^- \rightarrow \bar{S}_0^R$
Contact Interaction	e^{\pm}	various	
Quark Radius	e^{\pm}	any	
Large Extra Dimensions	e^{\pm}	any	
Excited Fermions	e^{\pm}	$e_L^- ightarrow f_R^*$	$e^+_R ightarrow f^*_L$
Excited Neutrinos	e^-	$e_L^- \rightarrow \nu_R^*$	

large lumi for stringent limit topical, large cross section

what is your favourite?

unique

Summary

Short Term

- establish high luminosity and exploit for physics
- hence e⁺p in 2002

Long Term

• evaluate all polarities and polarisation

and

- consider higher CMS energy which provide a quick gain in sensitivity
- explore low E_p for F_L measurement

