Effects of RF coupler kicks in L1 of EXFEL

XFEL measurements and Astra calculations Astra calculations and discrete coupler kick model discrete coupler kick model is not quite satisfying linearity of coupler kick a closer look to 1st module of L1 a closer look to one cavity more summary/conclusion

XFEL Measurements, 2017.01.23 and Astra Calculations (fieldmap)

the calculations are based on:

design optics from Nina Golubeva (DesignOptics_G1toB2D_130_600_2500.txt) with effective magnet lengths

fieldmap for SW operation, 8mm penetration depth of main coupler antenna "on crest" (E3D_TC_P08mm_SW_zcent_331.dat)

/home/xfeloper/data/trajectory_resp onse/2017-01-23T174902.txt "crosstalk" 1.8/13.7 = 0.13

"crosstalk" 1.78/12.5 = 0.143

comparison, horizontal:

comparison, vertical:

"crosstalk" 0.6/9.9 = 0.06

"crosstalk" 0.46/9.0 = 0.05

"crosstalk" 1.55/12.4 = 0.125

"crosstalk" 1.24/8.7 = 0.143

Astra Calculations (fieldmap) and Discrete Coupler Kick Model

the calculations are based on the optics from XFEL component-List Version 8.6.1 (21.09.2016)

fieldmaps: E3D_TC_P08mm_SW_zcent_331.dat E3D_TC_P08mm_fill_zcent_331.dat without excitation (by corrector), but for different cavity operation SW/fill, phase shift -30,0,+30 deg

discrete coupler kick model:

normalized complex coupler kick $\widetilde{\mathbf{V}}(x, y) = \int dz \times (\mathbf{E}(x, y, z) + c\mathbf{e}_z \mathbf{B}(x, y, z)) \exp(j\omega z/c)$

$$\begin{split} \mathbf{V}(x,y) &= \frac{\widetilde{\mathbf{V}}(x,y)}{\widetilde{V_z}(0,0)} \\ V_x(x,y) &\approx V_x + V_{x,x}x + V_{x,y}y \\ V_y(x,y) &\approx V_y + V_{y,x}x + V_{y,y}y \\ V_y(x,y) &\approx V_y + V_{y,x}x + V_{y,y}y \\ V_z(x,y) &\approx 1 + V_{z,x}x + V_{z,y}y \\ V_z(x,y) &\approx 1 + V_{z,x}x + V_{z,y}y \\ V_{z}(x,y) &\approx 1 + V_{z,x}x + V_{z,y}y \\ V_{z,y} &= -V_{x,x} \\ V_{x,y} &= V_{y,x} \\ \end{split}$$

 Bmm, SW, upstream 8mm, fill, upstream $V_{x/\mu} &= -56.813 + i \times 10.717 \\ V_{y/\mu} &= -41.091 + i \times 0.5739 \\ V_{y/\mu} &= -41.102 + i \times 0.54654 \\ V_{XX} \times mm/\mu = 0.99943 - i \times 0.81401 \\ V_{XX} \times mm/\mu = 1.0003 - i \times 0.8132 \\ V_{XX} \times mm/\mu = 3.4065 - i \times 0.4146 \\ V_{XY} \times mm/\mu = 1.0003 - i \times 0.41223 \\ Bmm, SW, downstream 8mm, fill, downstream 8mm, fill, downstream 9hase sensitivity \\ V_{Y/\mu} &= -24.014 + i \times 7.9888 \\ V_{Y/\mu} &= -51.461 + i \times 56.297 \\ V_{XX} \times mm/\mu = -4.057 - i \times 0.1369 \\ V_{XX} \times mm/\mu = -4.9278 - i \times 2.2112 \\ V_{XY} \times mm/\mu = 2.9243 - i \times 0.012891 \\ V_{XY} \times mm/\mu = 2.9224 - i \times 0.027228 \\ \end{split}$

insensitive/sensitive to mode of operation (SW, fill, ... and penetration depth)

comparison, SW mode

comparison, TW mode

with excitation (by CX118) SW, 0 deg

z/m

discrete coupler kick model is not quite satisfying

linearity of coupler kick

the implementation in Xtrack is different: use Serafini-Rosenzweig for RZ model and apply linear up-/down-stream kick before/after RZ-model

8 × 10⁻⁶ 1500 $\Delta \mathbf{x}$ P_x 6 Δy P_v Δz 1000 - p_{x,linear} 4 p_{y,linear} 500 2 0 0 -2 -500 -4 Δp_z =14.7 MeV/c -6 ·1000 p_{z1}=130 MeV/c -8 -10 ·1500 -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 x_{in} x_{in} 8 10-9 1500 $\Delta \mathbf{x}$ P_x 6 Δy P_y Δz 1000 P_{x,linear} 4 p_{y,linear} 2 500 0 -2 0 -4 $\Delta p_z = 14.7 \text{ MeV/c}$ $p_{z1} = 130 \text{ GeV/c}$ -6 -500 -8 ·1000 -10 -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01

x_{in}

horizontal variation

8 × 10⁻⁶ 1500 P_x $\Delta \mathbf{x}$ 6 Δy py Δz 1000 p_{x,linear} 4 p_{y,linear} 500 2 0 0 -2 -500 -4 Δp_z =14.7 MeV/c -6 ·1000 p_{z1}=130 MeV/c -8 -10 ·1500 -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 **y**_{in} **Y**in 6 10-9 1000 p_x $\Delta \mathbf{x}$ py 800 Δy - p_{x,linear} 4 Δz 600 - p_{y,linear} 2 400 200 0 0 -2 -200 -400 -4 $\Delta p_{z} = 14.7 \text{ MeV/c}$ $p_{z1} = 130 \text{ GeV/c}$ -600 -6 -800 ·1000 -8 0 0 -0.01 -0.008 -0.006 -0.004 -0.002 0.002 0.004 0.006 0.008 0.01 -0.01 -0.008 -0.006 -0.004 -0.002 0.002 0.004 0.006 0.008 0.01

У_{in}

vertical variation

a closer look to 1st module of L1 initial condition: x = 1 mm, y=0, px=0, py=0

a closer look to one cavity

initial condition: **x** = **1** mm, y=0, px=0, py=0

initial condition: x = 1 mm, y=0, px=0, py=0
offset dependent CK: X(3D,offset)-X(3D,0)-X(no CK,offset)

initial condition: x=0, y = 1 mm, px=0, py=0 offset dependent CK: X(3D,offset)-X(3D,0)-X(no CK,offset)

initial condition: **x** = **0.57 mm**, y=0, **px/pz=0.001**, py=0

more

CX 118, comparison, horizontal:

Astra-3D ↔ Astra-rz: rz fits better for phase advance and width of envelope

CX 118, comparison, horizontal: Astra-rz ↔ Xtrack without CK but for optics from Winnie's long list

summary/conclusion

measurements \leftrightarrow Astra (fieldmap): significant coupling between horizontal & vertical plane ~ 10%; effect is essentially reproduced by tracking; deviations might be explained by different optics and cavity operation

Astra (fieldmap): horizontal trajectory depends on cavity operation (SW/fill & phase); effect to to 3 mm; more severe fore SW; vertical ~ 0.3 mm

Astra (fieldmap) ↔ discrete coupler model: good agreement for different cavity operation but not quite satisfying for large offsets

discrete coupler model:

Xtrack uses discrete localized kicks CK field is not too linear but should by ok for few millimeters offset

further investigations:

agreement measurement \leftrightarrow Astra; optics/cavity operation/CK fields agreement field-model \leftrightarrow discrete model