Beam Dynamics Studies for the PITZ Undulator

S. Schmid, E. Gjonaj, and H. De Gersem
Institut für Teilchenbeschleunigung und Elektromagnetische Felder, TU Darmstadt

DESY/TEMF Meeting, Spring 2019

TEMF, Darmstadt, 13.06.2019
Structure

I. Introduction
II. Numerical Models
 i. 2D Undulator Model
 ii. Space Charge Models and Codes
III. Simulation Results
IV. Summary and Outlook
Introduction
THz SASE FEL at DESY PITZ

Motivation:
Development of a high power, tunable THz source for European XFEL
⇒ THz radiation at $\lambda \sim 100$ μm, ~ 6 ns pulse length, and ~ 38 MW peak power

THz-FEL Parameters:
- Bunch charge $Q_b \sim 4$ nC
- Beam energy $E_b \sim 16.7$ MeV
- Und. length $L_u \sim 3.4$ m
- Und. period $\lambda_U \sim 3$ cm

Challenge:
Transport of SC dominated beam
⇒ SC beam dynamics simulation

Further Information:
M. Krasilnikov et al., „Start-to-End Simulations of THz SASE FEL Proof-of-Principle Experiment at PITZ“, ICAP’18, Key West
Numerical Models
2D Undulator Model

Analytic 2D Undulator Field Model:

\[\vec{B}(\vec{r}) = B_0(z) \cosh\left(\frac{2\pi}{\lambda_u} y\right) \sin\left(\frac{2\pi}{\lambda_u} z\right) \hat{e}_y + B_0(z) \sinh\left(\frac{2\pi}{\lambda_u} y\right) \cos\left(\frac{2\pi}{\lambda_u} z\right) \hat{e}_z \]

with period \(\lambda_u = 3 \text{ cm} \), total length \(L_u = 120 \lambda_u \), and tapered \(0 \text{T} \leq B_0(z) \leq 1.28 \text{T} \)

2D Undulator Field on Axis:
Numerical Models
Idealized 2D Undulator

Periodic field
map w. tapering:

⇒ $B_y(x, y, z)$

Focusing in y:

⇒ $B_z(x, y, z)$

Linear tapering:

⇒ $\nabla \cdot \vec{B} \neq 0$
Numerical Models
2D Undulator Model

Beam Dynamics in the Undulator w/o SC:

![Graph showing beam dynamics](image)
Numerical Models
Space Charge Models and Codes

Inertial Frame Approach:

Electrostatic solver in bunch „rest“ frame
⇒ Approximation exact if $\beta = \text{const.}$ and $\Delta \beta = 0$
⇒ Missing effects: Non-inertial frame, velocity dispersion, radiation
⇒ Codes: Astra3D (PIC-FFT), Krack (PIC-FFT), TEMF-Code (PP), REPTIL (FMM)

\[\gamma \approx 32 \]
Numerical Models
Space Charge Models and Codes

Local Inertial Frame Approach:

Electrostatic solver for local particle frame
⇒ Approximation exact if $\beta_{\text{particle}} = \text{const}$.
⇒ Missing effects: Nonlinear trajectory, radiation
⇒ Codes: TEMF-Code (PP), “REPTIL (w. energy binning)”
Numerical Models
Space Charge Models and Codes

Liénard-Wiechert Approach:

Full electromagnetic solver
⇒ Evaluation of time-retardation $|\vec{r_i} - \vec{r_j}| = c \left(t_i - t_j \right)$
⇒ Liénard-Wiechert fields include radiation
⇒ Codes: TEMF-Code (PP)

For $t_j < t_0$ rigid bunch initialization:

⇒ $z_j \left(t_j \right) = z_j \left(t_0 \right) - c \beta_z \left(t_0 \right) \left(t_0 - t_j \right)$

Radiation Off:

⇒ Setting $\frac{d\beta}{dt} = 0$ neglects radiation field
Simulation Results
Retardation and Radiation Effects

Transversal Bunch Size Growth:

- Bunch size ΔX_{rms} for IF model larger than for LIF model
 \Rightarrow Artificial increase of static space charge effects
- Bunch size ΔX_{rms} for RO smallest
 \Rightarrow Static space charge effects not dominating
Simultation Results
Retardation and Radiation Effects

\Rightarrow Inertial frame approaches overestimate static space charge field
Simulation Results
Retardation and Radiation Effects

Transversal Bunch Size Growth:

- Good agreement of IF, Astra3D, Krack and Reptil simulations
- Small difference in ΔX_{rms} between IF and LW in bunch size
- Bunch size for RO significantly smaller than for LW
 \Rightarrow Radiation leads to higher emittance
Simulation Results
Retardation and Radiation Effects

⇒ Radiation fields dominate space charge beam dynamics
Simulation Results
Retardation and Radiation Effects

Longitudinal Bunching:

THz-Wavelength $\lambda_{THz} = \frac{\lambda_U}{2\gamma^2} \left(1 + \frac{K^2}{2}\right) \approx 105 \, \mu m$

Micro-bunching consistent with λ_{THz}
Simulation Results
Retardation and Radiation Effects

THz-Wavelength Dependency:

Longitudinal Phase Space $B_0 = 1.00$ T

Longitudinal Phase Space $B_0 = 1.28$ T
Simulation Results
Retardation and Radiation Effects

Particle Bunch at Undulator Exit:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>LW-model</th>
<th>IF-model</th>
<th>Rel. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δx_{rms}</td>
<td>3.1 mm</td>
<td>3.1 mm</td>
<td>+0.5%</td>
</tr>
<tr>
<td>Δy_{rms}</td>
<td>2.6 mm</td>
<td>2.6 mm</td>
<td>−0.9%</td>
</tr>
<tr>
<td>Δz_{rms}</td>
<td>2.2 mm</td>
<td>2.2 mm</td>
<td>−2.3%</td>
</tr>
<tr>
<td>δE_{rms}</td>
<td>347.4 keV</td>
<td>95.7 keV</td>
<td>−72.5%</td>
</tr>
<tr>
<td>ϵ_x</td>
<td>17 π mrad mm</td>
<td>13 π mrad mm</td>
<td>−24.6%</td>
</tr>
<tr>
<td>ϵ_y</td>
<td>10 π mrad mm</td>
<td>7 π mrad mm</td>
<td>−30.5%</td>
</tr>
<tr>
<td>ϵ_z</td>
<td>1366 π mrad mm</td>
<td>282 π mrad mm</td>
<td>−79.4%</td>
</tr>
</tbody>
</table>

- IF-model provides reasonable estimate for bunch size
- IF-model underestimates transversal emittance
- Strong deviation for energy spread and long. emittance
Simulation Results
Retardation and Radiation Effects

Radiation Field:

Screen at $z = 30.8 \text{ m}$

Spatial res. $\Delta x = 100 \mu\text{m}$
($\lambda_{THz} \approx 105 \mu\text{m}$)

Temporal res. $\Delta t = 0.1 \text{ ps}$
($T_{THz} \approx 0.35 \text{ ps}$)

\Rightarrow Memory limitation for Δt

... work in progress
Simulation Results
Retardation and Radiation Effects

Radiation Field:

Screen at $z = 30.8$ m

Spatial res. $\Delta x = 100$ μm
($\lambda_{THz} \approx 105$ μm)

Temporal res. $\Delta t = 0.1$ ps
($T_{THz} \approx 0.35$ ps)

⇒ Memory limitation for Δt

… work in progress
Summary & Outlook

Summary:
- Liénard-Wiechert simulations of THz-FEL undulator with $N \leq 100k$ particles
- Inertial frame models overestimate static space charge effects
- Radiation effects dominate space charge beam dynamics
- Astra3D, Krack, and Reptil provide reasonable estimates for beam size, but cannot reproduce momentum space (no general statement)

Outlook:
- Validation of Liénard-Wiechert simulations with CST EM-PIC
- Implementation of realistic undulator field map
- Study of bunch parameters: charge, size, etc…
- Approximation of particle world lines \Rightarrow red. LW-code memory requirements
- Approximation of retardation & retardation effects in Reptil \Rightarrow red. runtime

...thanks to M. Krasilnikov for the provided data.