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1. Introduction and Code Improvements

The CSRtrack code tracks particle ensembles through beam lines with arbitrary geometry.
The field calculation in CSRtrack offers different algorithms to choose from, from the fast
‘projected’ 1-D method to the most rigorous, the three-dimensional integration over 3D Gaussian
sub-bunch distributions (see section ‘forces’).

The 3D field calculations take Coherent Synchrotron Radiation fields into account as well as
intra-bunch fields, similar to the well-known space-charge fields on straight trajectories, but, on
curved paths, not cleanly separable from radiative fields any longer.

Tracking is done in absolute coordinates through a magnet lattice defined by magnet field
boundaries (see section ‘lattice’) using a self-consistent algorithm. CSRtrack handles dipole,
quadrupole and multipole magnets.

RF sections are not implemented yet. Tracking through long straight RF sections is better left
to codes like elegant or ASTRA, depending on the importance of space charge force.

1.1. Changes in Version 1.1:

New types of CSR field calculation methods:
- csr p tom
- ¢csr g tom

(see section ‘forces’). The forces are calculated using meshed electromagnetic field values
which is useful when tracking big numbers of particles since the cpu time scales linear (and not
quadratically) with the number of particles.

1.2. Changes in Version 1.2:
- Current smoothing for ‘projected’ force with a Gauss filter and position averaging.

- Added the possibility for the force type ‘projected’ to introduce a user defined wake
field to model for instance the resistive wake of a magnet chicane vacuum chamber.

- Bug fix for self-force of type projected (see appendix).



2. First Steps to run CSRtrack on a WINDOWS XP Computer

2.1. Download, Installation and a First Run
Download the file ‘CSRtrack examplel.zip’ from

http://www.desy.de/xfel-beam/csrtrack/index.html

and open it. You should see the following

. d Fle Actions Options Help
wWIinaow: ; = = P
9O & o aE I
MNew Open Favorites Add Extract View Checkout  Wizard
Name | Modfied | swe| Ratio | Pack... | Path [
TICSRIAk L. 19.10.2...  496.6... 53% 234.
[#) csrtrk.in 19.10.2..  3.111 80% 635
Bmfpartlcles.fmtl 19.10.2... 176.6... 90% 16.9... in\
Extracting all files into a new folder (called
‘CSRtrack_Test’ here) should lead to the [ oo e 0o

following if you explore the folder:

B CSRtrack Test
File Edit View Favorites Tools Help

Q) eac D - ¥ | O search [ Foiders | [~
Agdressluﬂ C:\Documents and Settings\imberg\Desktop\CSRtrack_Test b ‘ GO The fOlder ‘11’1’ COl’ltall’lS the paI’tICle

[ e and Fokies Tass _ distribution file ‘in_particles.fmtl’ (see
= ﬁ J - section ‘particles’), the ‘out’ folder is

o e e, e empty. The CSRtrack executable

i expects to find a ‘csrtrk.in’ file in the
same folder it is located. That file can
. be a complete description of the run or

it may refer to other input files (see ‘Command File’).

COX

. A~

Other Places

@ Desktop
(=] My Documents

Double-clicking  the executable
runs CSRtrack and the following
files should appear in the ‘out’

LOX

Fle Edt View Favorites Tools Help >

Q@oack - () (¥ O search [ Foders [T~

fOldeI‘: Address I@ C:\Documents and Settings\imberg\Desktop\CSRtrack_Test\out ~ ‘ Go
o W ~ [*lend.fmt3 [Flx_ooto.fme3  [F]x_0025.fmt3  [2]x_0040.fmt3
File and Folder Tasks 2) ™ [#) atout.dat [#1x_oo11.fmt3  [¥)x_0026.fmt3  [3)x_0041.fmt3
] log.txt [Flx_o012.fmt3  [s]x_0027.fmt3  [#]x_0042.fmt3
22 Make a new folder [*p1.fmt3 [Flx_0013.fmt3  [5]x_0028fmt3  [#]x_0043.fmt3
€} Fublish this folder to the =) steps.dat [F1x_o014.fmt3  [3)x_0029.fmt3  [%]x_0044.fmt3
Web %subﬁbunch.dat ﬂ x_0015.fmt3 ﬂ x_0030.fmt3 ﬂ x_0045.fmt3
k&l Share this folder #]x_0001.fmt3 ®]x_0016.fmt3 ®]x_0031.fmt3 ] x_0046.fmt3
NOW you ran CSRtraCk Successfully B : 3x70002.fmt3 ﬂxJDl?.fmtS %x,nnaz.ﬁmta 3x70047.fmt3
: 5)x_0003.fmt3  [5]x_0018.fmt3  [5)x_0033.fmt3  [*]x_0048.fmt3
fOI' the ﬁI'St time. F or a better Other Places %xjﬂn“».fmﬁ 3x70019.fmt3 %x,nnatt.fmta 3x70049.fmt3
. 5]x_0005.fmt3  [5]x_0020.fmt3  [3]x_0035.fmt3  [®]x_0050.fmt3
understandlng what you calculated [ CSRtrack Test [Flx_oooe.fmt3  [#]x_002Lfmt3  [£]x_0036.fmt3  [#]x_0051fmt3
. ) My Documents [#]x_oo07.fmt3  [#]x_0022.fmt3  [=]x_0037.fm3  []x_o0s2.fmt3
and how the output 1S generated, 8 iy Computer ~ [Elx_ooosfmt3  []x_0023.fme3  [2)x_0038.fmt3
[=]x_oo0g.fmt3  [#]x_0024.fmt3  [#]x_0039.fmt3

let’s look into the “csrtrk.in’ file. b dioes L



http://www.desy.de/xfel-beam/csrtrack/index.html

2.2. The Example Input (File)

It starts with the specification of in- and output paths (see section 1o_path), starting the path in
the folder where the executable is located.

io path{input =in,output=out,logfile=log.txt}

So our folders ‘in” and ‘out’ are specified as targets for in- and output.

Now the lattice is defined (see section ‘lattice’):

lattice{
dipole ! 1lst dipole
{position{rho=0.0,psi=0.0,marker=dla}
properties{r=-8.4}
position{rho=0.5,psi=0.0,marker=dlb}

dipole ! 2nd dipole
{position{rho=1.0,psi=0.0,marker=d2a}
properties{r=8.4}
position{rho=1.5,psi=0.0,marker=d2b}

dipole ! 3rd dipole
{position{rho=2.5,psi=0.0,marker=d3a}
properties{r=8.4}
position{rho=3.0,psi=0.0,marker=d3b}

dipole ! 4th dipole
{position{rho=3.5,psi=0.0,marker=d4a}

properties{r=-8.4}
position{rho=4.0,psi=0.0,marker=d4b}

And describes a four dipole magnet chicane



with the following parameters:

chicane

bend magnet length (projected) | 0.5 m
drift length,(proj.) Bl->B2and | 0.5 m

B3->B4

drift length, B2->B3 0.5m
bend radius 8.4 m
momentum compaction 6 mm

The particles distribution to be tracked is specified next:

particles{reference momentum =reference particle
reference point x =0.0
reference point y =0.0
reference point phi =0.0
format=fmtl, array=#file{name=in particles.fmtl}

After some options to change the reference system, the distribution is referenced to the file we
have already seen in the ‘in’ folder. The format is ‘fmtl’ in this case (see section

‘particles’).

The example consists of a Gaussian particle distribution (~1000 particles). Beam parameters are:

bunch

energy 511 MeV
charge 0.833 nC
bunch length (in) 80 um
bunch length (out) 20 um
peak current (out) 5kA
horizontal twiss parameters (in):

normalized emittance 1 mm mrad
alpha 2.2

beta 10 m
particle distribution

number of particles 997
number of slices 83
particles per slice 12




reference particle without charge

sub-bunch length 5.3 um
sub-bunch width (horizontal) 33 um
sub-bunch width (vertical) 50 um

The output of CSRtrack is prompted by so-called monitors: ‘Online monitors’ write data to file
during the tracking, ‘offline monitors’ save data at the beginning or the end (see ‘monitoxr’)

online monitor{name=sub bunch.dat, type=subbunch
start time cO=now
end time marker=d4b,end time shift c0=2.0
time step c0=all

online monitor{name=steps.dat, type=steps
start time cO=now
end time marker=d4b,end time shift c0=2.0
time step c0=all

}

online monitor{name=pl.£fmt3, type=phase, format=fmt3,particle=1
start time cO=now
end time marker=d4b,end time shift c0=1.0
time step c0=all

}

online monitor{name=x.fmt3, type=phase, format=£fmt3,particle=all
start time cO=now
end time marker=d4b,end time shift c0=1.0
time step c0=0.10

where name specifies the file name(s) to write the data to, accordingly the files named
‘sub_bunch.dat’ etc. appear in our ‘out’ folder. Details can be found in the section ‘monitor’;
in the example above data describing sub-bunch length, time-step-width and the phase-space
position of the reference particle along the beam-line are dumped in single files while the x n
files contain the phase-space coordinates for all particles at positions 10 cm apart from start to
end time marker+end time shift cO [m].

The method to calculate CSR fields and the parameters of the sub-bunches are chosen in the
‘forces’ command:
! force definition

forces{type=projected
sigma long= 5.3e-6



In this example, the 1-D projected field calculation method is used with a longitudinal size of
5.3um. See chapter ‘forces’ for details and other field solvers.

Finally, the range for the tracking calculation and the numerical parameters for the self-
consistent, iterative particle tracking are specified:

track step{precondition=yes
iterative=2
error per ct=0.001
error weight momentum=0.0

ct step min=0.02

ct step max=0.10

ct step first=0.10
increase factor=1.5
arc factor=0.3

duty steps=yes

tracker{end time marker=d4b,end time shift c0=1.00}

The ‘track step’ command specifies that iterative tracking will be performed until two
iterations are done or the error criterion is reached. The parameter ct _step min and the ones
below control the step-width algorithm. For details see section ‘track step’.

The ‘tracker’ command tells the code to track to the marker ‘d4b’, which is associated with
the end of the last bend (see the lattice definition above) plus an additional time interval which
corresponds to the reference particle traveling the length of 1 m with speed c0
(end time shift c0=1.00). For details see section ‘tracker’.

Finally, another monitor command writes the phase space at the end of the tracking to the file
‘end.fmt3’:

monitor{format=fmt3, name=end. fmt3}

The calculation is started by running CSRtrack in the directory with the input file. The
particle distribution is read from in/particles_in.fmt1 and all output files are written to
the directory out. This should create the same files as in the folder out solved.



2.3. Plotting Results

A MATLAB GUI called ‘CSRtrack ps viewer’ is available to plot CSRtrack results.
Download the file ‘ps_viewer.zip’ and extract the files in a folder ‘ps_viewer’. Open MATLAB,
choose that folder as working directory and enter ‘ps_viewer’ on the MATLAB command line.
You should see the following GUI:

) ps_viewer E“ E ,[g
u

Fle Plobs  Options
CSRitrack Phase Space Viewer
Chonse FI
| Browse | |
— Wiew Siices
— Bear O
1 1
0.8 0.8
0.6 0.6
04 0.4
0.2 0.2
0 i
0 0.2 0.4 0.6 0.8 1 0 02 04 0.6 0.8 i
— Beam
Meszage Window: | Done Initislizing |

Basically there are two axes to plot phase space projections for comparison. Use the ‘Browse’
button to open one of the result files you have in the ‘out’ folder in your CSRtrack test folder.
The browse window should show the following files:

Choose a Phasespace Data File

Lookin: |L'f)out ﬂ il g
[#]end.fmt3 [#]x_0002.fmt3 [#]x%_0010.fmt3 [#1x_0018.fir
|#)latout.dat [#1x_0003.fmt3 [#1x_0011.fmt3 [#1x_0019.fm
) log.bxt [#]x_0004.fmt3 [#)x_0012.fmt3 [#1%_0020.fm
[#1p1.fmt3 [#]x_0005.fmt3 [#]x_0013.fmt3 [#1x%_0021.fim
4 1ps_viewer_data.mat |]x_0006.fmt3 [#1x_0014.fmt3 [#1x_0022.fm
|#] steps.dat [#1x_0007.fmt3 [#1%_0015.fmt3 [#1x_0023.fm
[*]sub_bunch.dat [#1x_0008.fmt3 [#1x_o016.fmt3 [#1x_0024.fr
#]x_000L.fmt3 [#]x_0009.fmt3 [#x_0017.fmt3 [#1x_0025.fir
L | 3
oz |
Files oftype: |AII Files (*.%) ﬂ Cancel




The ps_viewer reads phase space distributions saved in the CSRtrack formats .fmtl (like the
input file) or .fmt3. Open the x _0001.fmt3 file and the longitudinal phase space at this position
will appear, after a message box

There are 52 files from x_0007 frmt3 to x_0052 fmt3

has informed you that there are 52 files along the beam line. A ‘Movie’ button pops up when
there are more than 3 files of such type and you can push it to see a movie of how the
longitudinal phase space evolves along the chicane.

Other phase space projections can be plotted by using the pull-down menus at the axis’ of the
plot. The following shows the horizontal phase space at the beginning (right) and end (left) of the
chicane (the slider or the editing field can be used to go back and forth between the different
x_nnnn files):

) ps_viewer

File Plots  ©ptions »

CSRtrack Phase Space Viewer

— Choose Fil

|‘-|imh9r9\nesmp\ﬁSR(ECk_E!Empla_“nm\r_ﬂﬂﬂ1 frm3| Browse |g\Desktop\CSRtrack_example_1 outt_0052 fmt3|
File #
File #
4 » 52 i
g ——T N
— Wiew Siices
-Slica -S\ice
— Beam Dispia,
& 4
®x 107 |p_hor - RMS: 2.42e-005 rad ®x 10 |p_hor - RMS: 4.46e-005 rad
5 Ny 1

=1
=1
n

-

5 . . 2 . . .
4 -2 0 2 4 -15 =1 0.5 0

0.5 1 15
RMS: 1.028-004 m hor | x10* RMS: 5 52e-005 m m 107

— Beam Parameters.

Emittance: 1 .00e-008 m-rad Emittance: 2 35e-006 m-rad
beta = 10.4 alpha = 2.26 heta =13 alpha = -0.316
Message Window: | Plot phase space data |

When ‘normal’ transverse phase space (like x-x’, here hor for horizontal and p hor for
normalized horizontal momentum) is plotted, the emittance and the optics is calculated, else only
the RMS values.
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2.4. Calculation of the example with other models for the CSR fields (‘forces’)

24.1.With Force Type p to p

The command file is the same as for force type = projected with exception of the force
definition:

forces{type=csr p to p,shape=ellipsoid
sigma long= 5.3e-6
sigma rad =33.0e-6
sigma vert=50.0e-6

24.2.With Force Type g to p

The command file is the same as for force type = projected with exception of the force
definition:

forces{type=csr g to p,shape=ellipsoid
sigma long= 5.3e-6
sigma rad =33.0e-6
sigma vert=50.0e-6

The dimensions of the sub-bunches are summarized in the following table.

Sub-Bunch Dimensions

sub-bunch length 5.3 um
sub-bunch width (horizontal) 33 um
sub-bunch width (vertical) 50 um

Results for the calculations with the different force types are plotted in the appendix.

11



2.5. Typical CPU Time and File Structure for the Example

Calculation time (on a PC from 2004) for the projected method is less then 1minute, for
the g to_ p method 30 minutes and for the ‘direct’ p_to_p method 8.5 hours.

examples
projected
csrtrk.in
in
in_particles.fmtl
out
out_solved
log.txt
latout.dat
sub_bunch.dat
steps.dat
x_0001.fmt3 ... x 0052.fmt3
end.fmt3
g top
csrtrk.in in out out_solved
p_to_p
csrtrk.in in out out_solved

12



3. CSRtrack Command Structure

3.1. Command File

CSRtrack reads all commands from the ascii input file ‘csrtrk.in’. It has the following
structure:

commands exit <CR>

with
commands = command [commands]
command = comment / global command / section
comment = | text <CR>
separator = <blank> / , / <CR>

The input file can be used to specify and open further input files (see #£ile). The length of
command lines in input files is limited to 400 characters.

3.2. Sections
section name { section body }
A section-call causes three activities:

1) The section is initialized after the opening bracket “{’,

2) Global commands and specific section commands are valid in the section body. Section
specific commands are either assignment statements or nested sections. The assignment of
section parameters can be done in any succession. The only exception is the particles
definition (see section particles).

3) The section action is started after the closing bracket ‘}.

3.3. Global Commands

There is only one global command in version 1.0:

#file{name = filename}
< name of nested input file >

global command
filename

The #file command opens a nested input file. The commands in this file are processed in the
same way as that in the command file ‘csrtrk.in’. Maximal 10 nested files can be opened at once.
Each nested file has to end with <CR>. After the processing of a nested file, CSRtrack continues
processing of commands in files with higher level or of commands in ‘csrtrk.in’.

CSRtrack searches the input file £1i1ename either in the root directory (with ‘csrtrk.in’) or, if
specified, in the input directory that is defined by the section iopath.

13



4. CSRtrack Sections

section name

io path file 10

lattice lattice definition

particles definition of particle distribution
track step Time grid, iterative tracking
tracker tracking

forces model for self forces

monitor monitor

online monitor | online monitor

4.1. Section: io_path

The io_path section is used to specify the input- and output-directories. If these directories
are unspecified, input- and output-files are read from or written to the root directory (with
‘csrtrk.in’).

identifier argument unit / type

input input directory character string
output output directory character string
logfile file name character string

Example:

io path{input =data/bc2/in,
output =data/bc2/out,
logfile=log.txt}

has the same effect as:

io path{logfile=1log.txt,
input =data/bc2/in,
output =data/bc2/out}

The logfile is written to ‘data/bc2 100/out/log. txt’.

4.2. Section: lattice

subsection name

dipole definition of dipoles

14



quadrupole definition of quadrupoles

multipole definition of multipoles

a) Concept: CSRtrack supports magnetic dipole- and multipole-fields that are defined in
specified (X,y,z) coordinates. The range of these fields is defined by two field-boundaries that are
perpendicular to the xy-plane. The dipole field between field boundaries is constant and parallel
to the z-axis. Together with the dipoles a reference trajectory is defined that is composed by arcs
and lines and lies in the xy-plane. The first part of the reference trajectory coincides with the x-
axis. The definition of each lattice element has three parts: the definition of the first field-
boundary, the definition of element properties and the definition of the second field boundary.

Ya field boundaries

reference
trajectory

dipole
®©B,

b) Example:

lattice{
dipole ! 1 dipole
{position{rho=0.0 ,psi=0.0,marker=dla}
properties{r=-1.66275}
position{rho=0.5 ,psi=0.0,marker=dlb}

dipole ! 2™ dipole
{position{rho=1.0 ,psi=0.0,marker=d2a}
properties{r=1.66275}
position{rho=1.5 ,psi=0.0,marker=d2b}

dipole ! 3™ dipole
{position{rho=2.463,psi=0.0,marker=d3a}
properties{r=1.66275}
position{rho=2.963,psi=0.0,marker=d3b}

dipole ! 4 dipole
{position{rho=3.463,psi=0.0,marker=d4a}
properties{r=-1.66275}
position{rho=3.963,psi=0.0,marker=d4b}

15



yA field boundaries

0.31156...
reference
trajectory
z 0.5 1 1.5 2.463 X 3.963

4.2.1. Definition of Field-Boundaries (Subsection: position)

identifier argument unit / type

rho value length / number
psi value angle /number
delta_s value length / number
delta psi value angle / number
marker marker name character string
duty yes /no

The position section is used to define field-boundaries. They can be defined absolute or relative.

a) Absolute definition of field boundaries: The field boundary is defined in polar coordinates by
the parameters rho and psi. The definition of the first field boundary has to be absolute. The
reference trajectory before the first field boundary is identical to the x-axis. The first reference
point is the intersection of the first reference plane and the X-axis. The rest of the reference
trajectory (and all later reference points) are recursively defined by dipoles and their curvature
radii.

N field boundary

X
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b) Relative definition of field boundaries: If the position and direction of the reference trajectory
are defined for one field boundary, the position and direction of the intersection with the next
field boundary is uniquely defined by the path-length difference delta s and the curvature
radius r (if a dipole is bounded). The orientation of the field boundary is either specified by psi
or delta psi or it is perpendicular to the reference trajectory. Psi defines the absolute
orientation (in the same way as for the absolute definition) and delta_ psi defines the angle
between field boundary and the plane perpendicular to the trajectory at the intersection point.

reference trajectory

. \\del ta
field boundaries . E

delta s
(path-length difference)

c) marker: The identifier marker is used to assign a name to a field boundary. The marker
names can be used to specify time events eg. The instantaneous time when the reference particle
(see particle definition) passes a field boundary. This identifier is optional, its argument is a
character string.

d) duty: The identifier duty can be used to affect the step width control of the tracking
algorithm (see track step). This identifier is optional, its argument is yes or no. If duty is
not specified, it is set to yes for field boundaries of dipoles and to no for the rest.

e) Example

position{delta s=0.2,marker=quad_in,duty=no}

4.2.2. Branch Section: Dipole

subsection name

position definition of field boundaries

properties dipole properties

a) Subsection position: See ‘Definition of Field Boundaries’.

b) Subsection properties:

identifiers argument unit / type

r value length / number

r sets the curvature radius of the reference trajectory. In combination with the reference
momentum (see particles) the strength of the dipole field is uniquely determined. To take
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into account vertical effects (z-direction) by edge [Ipecifie, the tracking algorithm applies a
vertical kick proportional to the offset from X-y-plane at the field boundaries.

field boundaries

/ reference

r <0 r > 0 | trajectory

c) Example:

dipole ! 1 dipole
{position{rho=0.0 ,psi=0.0,marker=dla}
properties{r=-1.66275}
position{rho=0.5 ,psi=0.0,marker=dlb}

4.2.3. Branch Section: quadrupole

subsection name

position definition of field boundaries

properties quadrupole properties

The definition of quadrupoles is identical to that of multipoles that is described in the next
subsection. The only difference is the parameter poles that obsolete. Example:

quadrupole{ position{delta s=0.2,marker=quad in,duty=no}
properties{strength=0.100,alpha=0
horizontal offset=0,vertical offset=0}
position{delta s=0.5,marker=quad out,duty=no}

4.2.4. Branch Section: multipole

subsection name

position definition of field boundaries

18



properties multipole properties

a) Subsection position: See ‘Definition of Field Boundaries’.

b) Subsection properties:

identifier argument unit / type
strength value (&) length”(—n) / number
alpha value (@) angle / number
horizontal offset | value (h)) length / number
vertical_ offset value (Vo) length / number
poles value (2n) integer

The magnetic multipole field is defined in a local specified coordinate system (V,h,S) with its
origin in the intersection point of the reference trajectory and the field boundary:

Ya field boundaries reference
trajectory

s = longitudinal
h = horizontal

. v = vertical (= 2)
dipole

The magnetic field between the field boundaries is independent on the longitudinal coordinate. In
complex notation the horizontal and vertical components By and By, of the field are:

. a . R
Bv"‘JBh:%m([h_ho]+1[v_vo]) CR

with q the particle charge, p, the reference momentum, n the azimuthal order, a the multipole
strength, ho, Vo the horizontal and vertical offset and « the skew angle. These parameters are
related to the properties identifiers by:

poles = 2n (= 4 for quadrupoles)
strength = a
horizontal offset = h
vertical offset = Vy
alpha = o

The parameters horizontal offset, vertical offset and alpha need not to be
specified. Their default is zero.
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c) Example:

multipole{ position{delta s=0.2,marker=quad in,duty=no}
properties{poles=4
strength=0.100,alpha=0
horizontal offset=0,vertical offset=0}
position{delta s=0.5,marker=quad out,duty=no}

4.3. Assignment Section: particles

identifier argument unit / type
format fmtl/ fmt2/astra
reference_momentum | value (p;)/ momentum / number

reference partice/

average
reference point x value (Xref) length / number
reference point_y value (Yrer) length / number
reference point phi | value (¢) angle / number

array

a) Concept: The particles section is used to define the position, momentum and charge of a
particle distribution in a absolute [Ipecified coordinate system (Xp,Yp,Zp). The first particle of this
distribution is called reference particle. The reference particle is treated as all other particles, but
some input and output parameters are defined relative to the reference particle. Eg. A time event
may be defined by the transition of the reference particle through a field boundary, or the
coordinates and momenta of other particles are given as increment to that of the reference
particle. The reference momentum relates the lattice settings to absolute field strengths. (The
reference momentum is not necessarily the momentum of the reference particle.) The properties
of the particle distribution as well as the absolute time are defined in an array that is assigned to
array. This assignment is terminated by the closing bracket of the section. Therefore array
has to be the last assignment.

b) (Xp,Yp,Zp)-coordinates: The (Xp,Yp,Zp) coordinate system of the particle definition is related to
the coordinate system of the lattice definition by:
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ypA

particles

(Xref eref)

(Xp — Xret )COS¢+(yp ~ Yier )Sil’l@
(Xref - Xp )Sin ¢+ (yp ~ Vet )COS(D
Zp

X
y
Z

c) reference momentum: The reference momentum is used to relate the curvature radii and
strengths settings (r, strength) in 1lattice to magnetic field strengths:

reference momentum = value (p;) /
reference particle /
average

Either the reference momentum is [Ipecified directly by value, or it is set to the momentum of
the reference particle or to the average momentum of all particles.

d) format and array: Three different input formats are available to define particle
distributions:

Format 1:
format = fmtl
array = { f r, r r, r I

Xr yr Zr pxr pyr pzr ql
5)(2 @/2 522 5pX2 5py2 5p22 qz
N, Yy Iy X Py, Py G

5Xn 5)/n 5Zn @Xn &)yn &)Zn qn

The arguments of the array command are processed in the same way as the rest of the
command file. Therefore the input can be directed to an other input file by the global command

#file{name = filename}

and comments as well as all CSRtrack separators are valid. The end of the argument list is
defined by the closing bracket of the particles section. In format 1 CSRtrack expects
7(N+1) numerical arguments. The first number t defines the time of the distribution. The next six
values (I, Iy, I3, I'4, I's, ') have no meaning and do not affect the result of the calculation. The
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triplets (Xr, Yr, Zr), (PXr, PYr, PZr) define the position and momentum of the reference particle in
(Xp, Yp, Zp)-coordinates. Q; is the charge of the reference particle. Each further particle is defined
by an additional set of numbers (i, dVi, Zi, MXi, MYi, HPzi, 0i) with the position (Xr+5;, yr+dyi,
zr+0z;), the momentum (pX,+pXi, PYr+PYi, PZr+Mz;) and the charge g;.

Format 2:
format = fmt2
array = 1 n r r, I, I

Xr yr Zr pXr pyr pZ r ql
&2 &]2 a/2 &)Sz 5ph2 5pV2 q2
&3 &13 &/3 5p53 ®h3 ®V3 q3

5Sn a«Il'l &/n &)Sn &) hn &)Vn q n

The structure of format 2 is the same as for format 1. Position and momentum of the reference
particle are defined as before. For all other particles the position- and momentum-differences to
the reference particle are given in (S, h, V) coordinates. The direction of the s-axis is defined by
the direction of the reference particle. The orthogonal h- and v-directions follow from:

u s preference_ particle/ preference_ particle
U, =U, xU;
uv =Uu s xu h

r=r, +d&U,+hu, +vu,

— Tref

P; =P +HPSUg +phu, +pvu,

Astra-Format:

format = astra

Astra coordinates are converted to CSRtrack coordinates by the permutation: (z,X,Y)astra —
(Xp,YpsZp)-

e) Example:
particles{reference momentum =reference particle
reference point x =0.0
reference point y =0.0
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reference point phi =0.0
format=fmtl, array=#file{name=particles bc2.fmtl}

}

4.4, Section: track step

identifier argument unit / type
precondition yes /no
iterative value (it) integer > 1

error per ct

value (err)

time”-1 / number > 0

error weight mo
mentum

value (Wmom)

number > 0

ct step min

value (tmin)

time / number > 0

ct step max

value (tmax)

time / number > 0

ct step first

Value (tf| rst)

time / number > (

duty steps yes /no
increase factor | value (fiy) number > 1
arc_ factor value (farc) number > 1

time grid file

file name

character string

steps tolerance

value (tol)

time / number > 0

a) Concept: CSRtrack calculates self-forces on a time grid and interpolates them linearly for
particle tracking. The section track step is used to control the time grid as well as the
tracking from one grid point to the next. There are two possibilities to determine the time grid or
the widths of time steps: either an external file defines the grid directly or the step widths are set
recursively. For a new force calculation the phase space coordinates all particles have to be
known, but they depend on the force that has to be determined. This implicit problem is solved
recursively (iterative tracking). The time steps and the parameters for iterative tracking are
crucial for the accuracy of the calculation. The track step settings can be redefined eg.
Before a consecutive call of the tracker section.

b) time grid file: The time grid can be defined directly by the uses of a file with time grid
values. The filename and a tolerance parameter are set by the following commands:

time grid file = file name
steps tolerance value (tol)

CSRtrack expects an ascii input file with the specified name in the input- or root-directory (see
io_path). It reads a list of time grid values, one value per input line with the time unit (1 m /

C()) .
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time grid (from file)

|| I I I I I T

v

» »

il first step last step
tpart tend
(time of particle distribution (end time specified
before tracking) in tracker)
4

CSRtrack processes time grid values between the actual time associated to the particle
distribution (tpart) to the end time (teng) that is defined in the section tracker. Time grid values
are ignored if they need steps smaller than the tolerance parameter. The tolerance parameter (tol)
is used to avoid a first step of zero length or to avoid extremely small steps.

For the preparation of the time grid, the user has to take care about the position of the particles
distribution in the lattice. The steps-monitor (see online monitor, type=steps) can be
used to support this task. E.g. a new time grid can be derived from an old one that was generated
by a calculation with recursive step widths control.

c) Recursive calculation of time steps: The automatic time stepping is active if no time grid file
is specified. It is controlled by the parameters

ct step max = tmax
ct step min = tmin
ct step first = Tirst
duty steps = yes / no
increase factor = fj
arc_factor = farc

If duty steps is set to ‘no’ or if no field boundary is passed during the track step CSRtrack
uses time steps longer or equal tmi,. The maximal time step is limited by min(tmin, tarc) With tarc =

farc 3/24R,0,,, With R¢ the actual curvature radius of the trajectory and oms the (actual) rms

length of the particle distribution. It starts with a step of the length tsirst and increases it for each
new step by the factor fac until it is limited by min(tmin, tarc).

The time dependency of forces is usually slowly compared to the bunch length. Transition
processes are typically of the order of the formation time ¢™' -3/24R o, . This is different if the

bunch shape or the curvature radius change rapidly. The duty steps command is used to
consider fast transient processes (especially of radial forces) at field boundaries. CSRtrack uses
extra grid points for the transition of field boundaries if duty steps is set to ‘yes’. At these
points the complete particle distribution is either directly before or directly after a field
boundary. (Duty steps at a particular field boundary can be disabled by the duty command in
the position section.) The recursive step algorithm is forward looking: it uses steps that are
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shorter than allowed if this helps to avoid a very short step before the end point (defined in
section tracker) or a duty point.

.j C.

recursive (automatic) time steps r/
[ I | | !
1 1 ) I — 1

> duty steps
first step last step
tpart tend
(time of particle distribution (end time specified
before tracking) in tracker)

d) Iterative tracking: To integrate the equation of motion from on grid point (t;) to the next (t,)
CSRtrack needs the self forces f(t) to all particles in the complete time interval t; <t <t,. They
are approximated by a linear interpolation between f; = f(t;) and f, = f(t;). As f, depends on

unknown phase space coordinates Xpn» = Xpn(t2) they are estimated by X(p'Rz and are improved to

X(pr:'? by iterative tracking. The first estimation X(plﬁjz is calculated with force " =0.

first step
(tz _t)f1
t, ft)y=——++
tz _tl
" o 0)
t,f,Xx Xoh.1 X X
P 7ent f P tracker R LUEEN
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one step
£V =f(t,, x(pr;]),z ,force type)

(n) (n+1) £(n)
tZ’Xph,z # Xph,2 vfz
—»
force type F(t) = (tz _t)f1 + (t -, )f2 error

tz _tl
: (n+1)
t,f.,X Xpn,1 X nh+2
Lprehd of ) tracker a
(n)
X ph,2
— error

CSRtrack repeats the iterative tracking until the error criterion (set by error per ct) is
fulfilled or the maximal number of iterations (set by iterative) is reached.

n=1l
iterative
—_— >
criterion first step
tz n=n+1
—p >
force type Xpn2s T2
- >
4 error
_ (M
one step X =X,
_§(n-D
f2 - f2
t, 9f1 s Xpn,1
yes o
X =X
error > err-(t;-t,) force'_type ph,2 ph,2 i
and ns it - DrOIQCted f2 = f(X ph,2 >t2 :pr')

As the field computation for force type = projected is very efficient, CSRtrack calculates
X o = x(p”h),z, f, :f(tz,x(p”h)’z,projected) for this type and uses X, = X(p”h),z, f, = f(tz,X(p”hT?,'“)

otherwise. (The force type is set by the command type in the forces section.)

e) Iterative tracking with precondition: The forces section provides several models for the
calculation of self forces, e.g. type = projected / csr p to p / csr g to p.As
the ‘projected’ model needs much less numerical effort then the other models, it could be helpful
to use phase space coordinates X,,, that have been computed by iterative tracking with this
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method to improve the start estimation for other methods. This option is activated or deactivated
by the command

precondition = yes / no
f) Error criterion: The accuracy parameter is set by the command

error_per ct = eIr
error weight momentum = Wpony

The (relative) error citerion is

error(x(p“h)’z,x(p”hf?) <(t,—t)-err

<(S<n+1) _ S(n))2> <(h<n+1> _ h(n))2>

(n+1) ) \?
. <(ps - ps ) >
error(x'?,, x")) = + +W

P22 en <(S<n+1>_<5<n+l>>)2> <(h<”+”—<h(”*”>)2> - <( §”+l)—<p§"+l)>)z>

with s, h and ps the longitudinal-, horizontal- and momentum offset of all particles with respect
to the reference particle. The operator <X> averages phase space coordinates without weighting

by particle charges.

g) Example:

track step{ct step min=0.02
ct step max=0.20
ct step first=0.20
increase factor=2.0
arc factor=0.3
duty steps=yes

iterative=2

error per ct=0.001

error weight momentum=0.1
precondition=yes

}

The sum of the relative errors of all track steps from tpart (Start time) to teng 1S below err-(teng —
tpart). For a chicane with a path length of about 5Sm the simulated time interval will be similar (= 5
m/c) . Therefore the sum of relative errors is below 0.005 for err = 0.001. Note that the
parameter err controls errors due to iterative tracking and not the error related to the quality of
the time grid.
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4.5. Section: tracker

identifier argument unit / type
end time c0 value (tend) time / number
delta time cO value (dteng) time / number
end time marker marker name character string
end time shift cO0 | value (tir) time / number

The particle tracking is activated by the tracker section. There are three possibilities to define
the time end (teng) of the calculation: either directly by the command

end time c0 = feng
or incremental by
delta time cO0 = dteng = tend — tpart
or by reference to a field boundary with marker (see position section)

marker name
Eshift

end time marker
end time shift cO

The last option defines the time end relative to the time ts, when the reference particle travels
through the field boundary which is specified by marker name:

tend = tro T tshife

If the time grid is defined by an external file (see section track step, command
time grid file) the tracking is executed until the last grid value before or equal to the end
time is reached. Otherwise the recursive time step algorithm generates time steps that end exactly
at teng. The tracker section can be called more then once. Before a consecutive call of the
tracker section it is for example possible to modify track step parameters or to call the
moni tor section.
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ref. particle

dtend

tpart
(time of particle distribution
before tracking)

Example:

tto

tshift
tend
(end time specified
in tracker)

tracker{end time marker=d4b,end time shift c0=0.10}
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4.6. Section: forces

identifier

argument

unit / type

type

none /
projected /
csr p to p /
csr g to p /
csr p tom /
csr g tom

shape

sphere/
ellipsoid

sigma long

value (o) /

relative /
file

length / number > 0

relative long

value (Ojjrel)

number > ()

sigma rad

value (o7) /
file

length / number > 0

sigma vert

value (oy) /
relative /
file

length / number > 0

relative vert

value (oyrel)

number > 0

sigma_file file name character string
shield

shield max

use old mesh yes /no

parl

par2 M integer > 0
par4 number

par5 number

wake file file name character string
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46.1. Introduction to the Different CSR Models

CSRtrack provides several models for the calculation of self-forces. The type of the model is
specified by the command type with the possible choices:

none / projected / csr p to p /csr g to p /csr p tom / csr g to m

The parameter none causes particle tracking without self forces. If type is set to projected,
CSRtrack uses a simple and very efficient model that neglects transverse dimensions of the
source distribution, transverse forces, the transverse dependency of longitudinal forces as well as
space charge effects. This model is based on a gaussian sub-bunch approach: all source particles
are replaced by sub-bunches with corresponding strengths and longitudinal offsets. Therefore the
three dimensional distribution of point particles is approximated by a smooth line charge density.
The calculation of longitudinal fields neglects deformations of the retarded density function.

The method ‘esr p to p’ replaces all source particles by three dimensional gaussian sub-
bunches with individual strength and trajectory but with the same shape. It neglects vertical
offsets and vertical particle motion. As all ‘point’ to point (or more precise sub-bunch to point)
interactions have to be calculated, the numerical effort increases quadratically with the number
of particles. The method ‘ecsr g to_ p’ is based on the same sub-bunch approach and the same
‘point’ to point interactions, but it uses a pseudo green’s function for the field of a sub-bunch.
Before each computation of ‘point’ to point interactions, the electromagnetic field is calculated
on a mesh in the horizontal plane for a ‘typical’ sub-bunch. The trajectory of other sub-bunches
can be fitted to the trajectory of the ‘typical’ sub-bunch by a coordinate transformation. The

same transformation is used to calculate the electromagnetic fields of other sub-bunches from the
meshed field.

New in version 1.2 are csr p to m and csr g to m. They have the same effect as
csr p to pand csr g to p, but the forces are calculated from meshed electromagnetic
field values.

4.6.2. Parameters for the projected Force

This model uses one dimensional Gaussian sub-bunches. There are three possibilities to define
their longitudinal rms length. Either the longitudinal size o) is set directly by the command

sigma long = 0
or it is defined relative to the rms length of the particle distribution by

sigma long relative
relative long = Ojwl

or it is set by an input file with

file name
file

sigma file
sigma long
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The last two possibilities allow to use sub-bunch dimensions that depend on time. The
calculation of fields with time dependent sub-bunches neglects the change of the bunch length at
retarded times. The use of bunch dimension files is described below.

4.6.2.1. Current Smoothing: Gauss Filter and Position Averaging

The input for the 1d-current smoothing algorithm are the longitudinal position z, and charge

g, of each particle. The continuous current is calculated as

L e _l(if
oN27 2\ o '

The sub-bunch length o, is controlled by sigma_long, or, if specified, by a data file (see

|(Z)=002qvh(z— 2v,a“/\/§) with  h(z,o)=

previous paragraph). Usually the longitudinal positions z, and Z, are identical.

For non-systematic phase space distributions (random initial distribution, identical charge of
all particles) a slight manipulation of the longitudinal particle positions helps to reduce the
noise. This is for example possible by position averaging:

z§M>=ﬁ izﬂ with m=|[M/2],

H=v—-m

supposed the particles are sorted by the longitudinal position. CSRtrack uses the superposition of
two averaging operations:

. 2 1
5 —Zg08M) 1 o05M)

v 3 v 3 14

Position averaging is activated by setting the optional parameter par1l in the forces section to
1. The value of M has to be assigned to a second optional parameter par2.

Example:

forces{type=projected sigma long=0.000008 parl=1 par2=10000}

The effect of the position averaging on the beam distribution is shown in the appendix.
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4.6.2.2. Projected Force and Wake per Length

In combination with the self-force of type projected it is possible to define and use a position
independent longitudinal wake. This can be used to estimate the effect of the resistive wall wake.

The wake per length is defined by an ascii file with a table in the following format: each line
has to end with <CR>. Each line that includes the comment character ! is ignored. The
numerical input (one number per line) is read from all other lines. The first number of the table is
the rms sub-bunch length o, for which the wake potential has been calculated. The second

number is the step width o,,, of the table and the next two integers i, and i, define the
longitudinal position of the first and last point in the table (0, , Oy, )- The next 1+1i, —i,
numbers are the values of wake table (unit: V/(Cm)).

In the calculation loop that is processed in the tracker section CSRtrack determines for
each step the sub-bunch length o, as specified and calculates the longitudinal current 1(z)as

described above. If the sub-bunch length o, is smaller than o, / V2 the wake W, 5 1

calculated by a convolution. If o, is larger than required CSRtrack uses the tabulated wake

with modification and warning. Therefore the longitudinal self-field is calculated by the
following convolution:

Ecn (Z) = “I (Z - f)(a ) Egu/ﬁ(é) +b 'Wan/fz (5))}[15

witha=1—-par4 and b =1 — par5. The name of the file with the tabulated wake as well as the
parameters par4 and par5 can be set in the forces section. The definition of a wake table is
optional, the default values of par4 and par5 are zero.

Example:

forces{type=projected sigma long=0.000008 parl=1 par2=10000
shield=0.008
wake file=wake cu flat 2x4mm.dat

}

4.6.3. Parameters for the csr p to p and csr g to p Forces

These models use Gaussian sub-bunches that are either spheres or ellipsoids:
shape = sphere / ellipsoid

The radius of spherical sub-bunches is defined in the same way as the longitudinal dimension of
sub-bunches of the projected force. Ellipsoidal bunches have three rms parameters: the
longitudinal size o), the horizontal (or radial) size o; and the vertical size o,. o) and o are either
set directly, or relative to the corresponding rms dimension of the particle distribution, or by an
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input file with sub-bunch dimensions. o; is either defined directly of by file. The calculation of
fields with time dependent sub-bunches neglects the change of the bunch length at retarded
times. The use of bunch dimension files is described below.

46.4.Additional Parameters for the csr p to m and csr g to m
Forces

Beyond the parameters above, sbox and rbox can be used to modify the longitudinal and
radial step width of the (equidistant) mesh. The step widths are: As = sbox:0j, Ar = rbox-o;
with o), o; the longitudinal and radial rms dimension of the sub-bunches. The default values are
sbox = 0.5, rbox=0.5. Mesh field values are used only for cells with at least four particles
(observers) per cell, otherwise the field values are calculated directly. The additional output per
calculation step looks like this:

ctstep= 0.03000 - ct= 10.77925
*** gtep error/step time= 4.98611017E-05
boxes = 1961 e points= 5027 p points= 7886
step_error/step time= 0.00198496122
boxes = 1960 e points= 5026 p points= 7887
step_error/step time= 6.39205063E-07
ctstep= 0.02581 - ct= 10.80506
***% gtep error/step time= 5.22485114E-05

boxes = 1992 e points= 5070 p_points= 7712
step error/step time= 0.00203230079,

where ‘boxes’ is the number of mesh cells (with at least four particles) that are calculated,
‘e points’ is the number of edge points of these cells and ‘p points’ is the number of
particles (observers) that are calculated directly.

Sometimes it is possible to reuse the Green’s function (for forces esr g to p and
csr g to _m) for successive tracking iterations (e.g. if sufficient memory space is available to
store the function on the complete mesh). The command use 0ld mesh = yes/no can be
used to enable/disable this possibility.

4.6.5. Shielding

the commands shield= .. and shield max-=... are used to specify shielding by perfect
conducting horizontal planes; shield defines the distance h between the conducting planes and
shield max defines the maximal vertical distance to which mirror charges are taken into
account.
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mirror charges:

!
-

=<__h s

it

Work in progress: the mesh of the Green’s function is not optimized for wave fronts that are
created by mirror charges; therefore the global mesh density is increased. This solution is not
optimal concerning mesh resolution and computational efficiency.

Attention: Shielding causes a dispersive propagation of electromagnetic fields; a time grid (see
track step) that works for calculations without shielding is not necessarily sufficient with
shielding (and otherwise); it is recommended to observe the particle coordinates and forces at
few test particles for all time steps (see online monitor, type = phase, particle =
m) and to adjust the grid if required.

4.6.6. Setting Sub-bunch Sizes from File

Sub-bunch sizes can be defined directly by file. The file name is set with the command
sigma file = file name

CSRtrack expects an ascii input file with the specified name in the input- or root-directory (see
io path). It reads a list of values for time and dimensions (units = time, length, length, length):

tt on on ou
b op o2 ow
3 o o3 oy
4 o ou ow

tn Ol|n Om Ovn

(Each input line has to start with four numbers, the rest is ignored.) The sub-bunch dimensions
are calculated by linear interpolation along the time axis (see track step, time grid). The
interpolated longitudinal dimension is used if the argument £ile is assigned to sigma long.
Corresponding assignments can be used for the transverse dimensions. The output file created by
the steps-monitor (see online monitor, type=steps) can be used as sub-bunch
dimension file, e.g. to perform calculations with exactly the same dimensions a in an earlier run.
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4.6.7. Examples

The CSR field of ellipsoidally shaped sub-bunches is calculated with the Green’s function
method (csr_g_ to_ p). The bunch length at different positions along the beam line is read
from the file my file.dat, the horizontal size is fixed and the vertical scales with the vertical
size of the beam:

forces{type:csr g to p,
shape=ellipsoid
sigma file=my file.dat
sigma long=file
sigma rad =0.0003
sigma vert=relative,relative vert=1.0

}

If meshed forces and shielding are used, the general format of the forces section will look like
this:

forces{type = ...,
sbox = ..., rbox=...,
use old mesh = ...,

shield= ..., shield max=... }

4.7. Sections: monitor and online monitor

a) Concept: The monitor section is used to write particles properties and forces before or after
a tracking calculation to file while monitors defined in the online monitor section are
served during the tracking. As fields and forces are calculated during the tracking, which is
activated in the tracker section, they are undefined before the tracker section has been
called.

b) monitor section:

identifier argument unit / type
name file name character string
format fmtl/ fmt2 / fmt3

The name of the output file is defined by name = file name. The file formats are described
below.

c) online monitor section:

identifier argument unit / type
name file name character string
type phase /

subbunch /
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steps

format

fmtl/ fmt2 / fmt3

particle

value (M)

integer

start time cO

Value (tstart) /
now

time / number

start time marker

marker name

character string

start time shift cO

Value (dtstart)

time / number

end time cO

value (teng)

time / number

end time marker

marker name

character string

end time shift

Value (dtend)

time / number

time step cO

Value (tstep) /
all

time / number

There are three different monitor types:

type = phase / subbunch / steps

The type phase is used to monitor properties of an individual particle or of the complete

distribution.

d) Monitor Events: Online monitors are served during the tracking each time when a monitor
event is fulfilled. In principle monitor events are defined by the start time tsart, end time teng and
time step tsep, but the so defined monitor grid does usually not coincide with the time grid
defined in the section track step. Therefore monitor events are related always to the next

following point on the time grid. tsat and teng can be specified either directly by

start _time cO tstart / nOW
end time c0 = tey

or by reference to a field boundary with marker:

start time marker

marker name

start time shift c0 = digan
end time marker = marker name
end time shift cO = dieng

The second possibility defines the time relative to the time ty, when the reference particle travels
through the field boundary which is specified by marker name:

tstart = o + tstart and/or tend = tip + dtend

The time step is defined by

time step c0 = ftyp / all

The argument all has the effect that all points on the time grid are monitored.
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monitor events 1 2 3 4 5 6

e) Name convention for output files: Phase monitors of the full particle distribution
(type=phase, particle=all) create for each monitor event an individual file. The file
name is derived from the argument of the name command and the event number as follows:

name=<string>.<extension>

1*" monitor event — file name = <string>0001.<extension>
2" monitor event —> file name = <string>0002.<extension>
3™ monitor event — file name = <string>0003.<extension>

The numbering of monitor events depends on the definition of tsart and tsep that can be defined
individually for different monitors. Therefore events with the same number that have been
recorded by different monitors do not necessarily coincide.

f) Example:

online monitor{name=x.fmt3, type=phase, format=£fmt3,particle=all
start time cO=now
end time marker=d4b,end time shift c0=1.0
time step c0=0.02

}

471 online monitor: type=phase
Writes files containing phase space information of all or selected particles.

a) format = fmtl ,h particle = all: This format is compatible to the corresponding
input format of the particles section. The output file can be used as input file for a later
(restarted) calculation. Each line of the output file is written with the fortran format
(7(1x,e22.15)). The last six numbers in the first line (Iy, Iy, I3, I'4, s, I'¢) are set to zero.

b) format = fmt2 , particle = all: This format is compatible to the corresponding
input format of the particles section. The output file can be used as input file for a later
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(restarted) calculation. Each line of the output file is written with the fortran format
(7(1x,e22.15)). The last six numbers in the first line (ry, I, I'3, I'4, I's, I'¢) are set to zero.

c) format = fmt3 , particle = all: Each line of the output file is written with the
fortran format (10(1x,e22.15),2(1x,11)). The output file has the following structure:

t »» 0 0 0 0 O o o o, 0 0

hr h; Vv, V; 0 &r q, fsﬁl fh 1 fv,l Ls,l Lt,]
hz h; 2 V; S, 562 a, fs,z fh,z fv,z Lsﬂz Lt,z
h3 h3’ V3 V; 33 &3 q3 fs,3 fh,3 fv,3 L5ﬁ3 Ll,3

n n n n n

h h v V. s &n qn fs,n fh,n fv,n Ls,n Lt,n

t is the time of the distribution. % is the Lorentz factor y that corresponds to the reference
momentum (see particles section). o, oy, and o; are the longitudinal, radial and vertical rms
sub-bunch dimensions that were used for the force calculation (see forces section). The
particle coordinates (h;, vi, Sj) and slopes (hi’, vi’) are defined relative to the reference trajectory
and the reference particle: (h;, hj”) are horizontal parameters, (vi, Vi’) are the offset and slope in
vertical- or z-direction and s; is the path-length difference with respect to the reference particle.
oe; is the relative energy deviation normalized to the energy that corresponds to the reference
momentum. (fs;, fnj, fyi) are the force components with:

Us; :pi/pi
Upi =U, XUg;
U,; =Ug; XUp;

fi=f,ug +fu,+f.u,

In the present version of CSRtrack there is no input format available that allows to set or reset
the source and test flags (Ls;, Ltj). Therefore they are always set (=1). The source flag
determines if a certain particle contributes to the generation of self-fields or not. A particle is
tracked with self and external forces if the test flag is set, otherwise only external fields affect the
motion of this particle.

particle i

ref. particle
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d) format = fmtl, particle = m: For each monitor event, a new line with the actual
phase space information of particle m is added to the output file. The file is of the following
structure:

(tD (tD) (th (tD (tD (tD)

tl 5Xm é)lm 5Zm a:)xm d)ym d)zm Qm
(t2) (t2) (t2) (t2) (t2) (t2)

tz 5Xm 5ym é‘Zm &Dxm 5pym 5pzm qm
(t3) (t3) (t3) (t3) (t3) (t3)

t3 5Xm é‘ym 5Zm 5pxm é‘pym ﬂozm qm

The first column (t;, t, t3 ...) is the time of the monitor event (unit = time). The next seven rows
describe the position, momentum and charge in the same way as for the corresponding input
format (£mt1, Xp, Yp, Zp-coordinates). This means the coordinates of the reference particle (m=1)
are absolute, the coordinates of all other particles (m> 1) are relative to the reference particle.

e) format = fmt2, particle = m: For each monitor event, a new line with the actual
phase space information of particle m is added to the output file. The file is of the following
structure:

(t1) (t1) (t1) (t1) (t1) (t1)

t1 asm a’]m é‘lm 5psm ﬂ)hm 5me qm
(t2) (t2) (t2) (t2) (t2) (t2)

t2 5Sm &m &m djsm 5phm 5me qm
(t3) (t3) (t3) (t3) (t3) (t3)

t3 5Sm &m &m dgsm 5phm 5me qm

The first column (1, t, t3 ...) is the time of the monitor event (unit = time). The next seven rows
describe the position, momentum and charge in the same way as for the corresponding input
format (£mt2). This means the coordinates of the reference particle (m = 1) are absolute, the
coordinates of all other particles (m> 1) are relative to the reference particle (Us, Uy, Up-base).

f) format = fmt3, particle = m: For each monitor event, a new line with the actual
phase space coordinates and forces of particle m is added to the output file. The file is of the
following structure:

(t1) 1(tl) (t]) 1(t1) (t1) (th) (t1) (t1) (t1)
t1 hm hm Vm Vm Sm em qm fs,m fh fv,m L Lt,m

,m S,m
(t2) 1(t2) (t2) 1(t2) (t2) (t2) (t2) (t2) (t2)

t2 hm hm Vm Vm Sm em qm 1:s,m 1:h,m fv,m Ls,m Lt,m
(t3) 1(t3) (t3) 1(t3) (t3) (t3) (t3) (t3) (t3)

t3 hm hm Vm Vm Sm em qm fs,m fh,m fv,m Ls,m Lt,m

The first column (t;, t, t3 ...) is the time of the monitor event (unit = time). The next eleven rows
describe the position, momentum, charge and force in the same way as for the corresponding
input format (£mt3).
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47.2.online monitor: type = subbunch

Writes a file containing the sub-bunch dimensions along the beam line.

473.online monitor: type = steps

Writes a file containing the (longitudinal) position at the end of each calculation step, the
tracking error at this position and the number of tracking iterations.
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5. Appendix

5.1. CSRtrack Units

dimension normalization
length I m

time I m/c
momentum 1eV/coy
charge 1C

angle 1 deg

5.2. Results for Example Case

Comparison of calculations with force types p_ to p, g to p and projected. The data
points for force type p_to_p are plotted in red, for g _to p in blue and for projected in
green. Usually the red points are hidden by the blue ones.

bunch current
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-l)’.,‘
0k - —
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=0.005 .
=0.02
1
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sfum
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5.3. Example for Position Averaging Pulse Smoothing Technique

longitudinal phase space
| T T

I:I —]
= 0ot —
[r]

i
-0.0z2 -
-0.03 -
-100 =50 1] a0 100
letigth / umm
s000 ! ! ! =
i without position averaging |
-1
W o, =1.4pum B
= I
g o, =0.14 pm B
1aaa -
1]
=100 =50 1] a0 100
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5000 .

with position averaging

4000 |~ |
T i - M =5000 1
B N =100000

5 2000 — ]

o,=1.4pm
o, =0.14 pm

1000

—100 -0 1] a0 100

5.4. Fixed Bugs
In Version 1.0:

The sub-bunch length for the self-force of type projected was slightly wrong: the longitudinal
self-field E) is calculated as convolution of the longitudinal 1d-current I with the CSR-field

EGH/ »» of a Gaussian sub-bunch. The Id-current I is computed on an equidistant mesh by

substitution of all point particles by sub-bunches of the length o, / V2. By mistake the sub-bunch
length for the calculation of Eo‘H 1z Was o instead of o, / V2 . Therefore the effective sub-

bunch length was \/E -0, ~1.220, instead of o, . This has been fixed.
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