

CSRtrack Version 1.2

User’s Manual

M. Dohlus and T. Limberg

Contact:

Martin.Dohlus@desy.de / Torsten.Limberg@desy.de

 1

mailto:Martin.Dohlus@desy.de
mailto:Torsten.Limberg@desy.de

Table of Contents

1. Introduction and Code Improvements ..3

1.1. Changes in Version 1.1:..3
1.2. Changes in Version 1.2:..3

2. First Steps to run CSRtrack on a WINDOWS XP Computer ..4
2.1. Download, Installation and a First Run ..4
2.2. The Example Input (File)..5
2.3. Plotting Results...9
2.4. Calculation of the example with other models for the CSR fields (‘forces’)..11

2.4.1. With Force Type p_to_p ...11
2.4.2. With Force Type g_to_p ...11

2.5. Typical CPU Time and File Structure for the Example..12
3. CSRtrack Command Structure ..13

3.1. Command File ..13
3.2. Sections...13
3.3. Global Commands ..13

4. CSRtrack Sections ...14
4.1. Section: io_path ...14
4.2. Section: lattice ...14

4.2.1. Definition of Field-Boundaries (Subsection: position) ..16
4.2.2. Branch Section: Dipole..17
4.2.3. Branch Section: quadrupole...18
4.2.4. Branch Section: multipole ...18

4.3. Assignment Section: particles...20
4.4. Section: track_step ..23
4.5. Section: tracker ...28
4.6. Section: forces..30

4.6.1. Introduction to the Different CSR Models...31
4.6.2. Parameters for the projected Force ..31
4.6.3. Parameters for the csr_p_to_p and csr_g_to_p Forces ..33
4.6.4. Additional Parameters for the csr_p_to_m and csr_g_to_m Forces ..34
4.6.5. Shielding..34
4.6.6. Setting Sub-bunch Sizes from File ..35
4.6.7. Examples ...36

4.7. Sections: monitor and online_monitor...36
4.7.1. online_monitor: type=phase ..38
4.7.2. online_monitor: type = subbunch ..41
4.7.3. online_monitor: type = steps..41

5. Appendix ...42
5.1. CSRtrack Units ...42
5.2. Results for Example Case ...42
5.3. Example for Position Averaging Pulse Smoothing Technique...44
5.4. Fixed Bugs..45

6. Bibliography ..45

 2

1. Introduction and Code Improvements
The CSRtrack code tracks particle ensembles through beam lines with arbitrary geometry.

The field calculation in CSRtrack offers different algorithms to choose from, from the fast
‘projected’ 1-D method to the most rigorous, the three-dimensional integration over 3D Gaussian
sub-bunch distributions (see section ‘forces’).

The 3D field calculations take Coherent Synchrotron Radiation fields into account as well as
intra-bunch fields, similar to the well-known space-charge fields on straight trajectories, but, on
curved paths, not cleanly separable from radiative fields any longer.

Tracking is done in absolute coordinates through a magnet lattice defined by magnet field
boundaries (see section ‘lattice’) using a self-consistent algorithm. CSRtrack handles dipole,
quadrupole and multipole magnets.

RF sections are not implemented yet. Tracking through long straight RF sections is better left
to codes like elegant or ASTRA, depending on the importance of space charge force.

1.1. Changes in Version 1.1:

New types of CSR field calculation methods:

- csr_p_to_m

- csr_g_to_m

(see section ‘forces’). The forces are calculated using meshed electromagnetic field values
which is useful when tracking big numbers of particles since the cpu time scales linear (and not
quadratically) with the number of particles.

1.2. Changes in Version 1.2:

- Current smoothing for ‘projected’ force with a Gauss filter and position averaging.

- Added the possibility for the force type ‘projected’ to introduce a user defined wake
field to model for instance the resistive wake of a magnet chicane vacuum chamber.

- Bug fix for self-force of type projected (see appendix).

 3

2. First Steps to run CSRtrack on a WINDOWS XP Computer

2.1. Download, Installation and a First Run

Download the file ‘CSRtrack_example1.zip’ from

http://www.desy.de/xfel-beam/csrtrack/index.html

and open it. You should see the following
window:

Extracting all files into a new folder (called
‘CSRtrack_Test’ here) should lead to the
following if you explore the folder:

The folder ‘in’ contains the particle
distribution file ‘in_particles.fmt1’ (see
section ‘particles’), the ‘out’ folder is
empty. The CSRtrack executable
expects to find a ‘csrtrk.in’ file in the
same folder it is located. That file can
be a complete description of the run or

it may refer to other input files (see ‘Command File’).

Double-clicking the executable
runs CSRtrack and the following
files should appear in the ‘out’
folder:

Now you ran CSRtrack successfully
for the first time. For a better
understanding what you calculated
and how the output is generated,
let’s look into the ‘csrtrk.in’ file.

 4

http://www.desy.de/xfel-beam/csrtrack/index.html

2.2. The Example Input (File)

It starts with the specification of in- and output paths (see section io_path), starting the path in
the folder where the executable is located.

!---
io_path{input =in,output=out,logfile=log.txt}

So our folders ‘in’ and ‘out’ are specified as targets for in- and output.

Now the lattice is defined (see section ‘lattice’):
!---
! 4 magnet bunch compressor
!---
lattice{
 dipole ! 1st dipole
 {position{rho=0.0,psi=0.0,marker=d1a}
 properties{r=-8.4}
 position{rho=0.5,psi=0.0,marker=d1b}
 }
 dipole ! 2nd dipole
 {position{rho=1.0,psi=0.0,marker=d2a}
 properties{r=8.4}
 position{rho=1.5,psi=0.0,marker=d2b}
 }
 dipole ! 3rd dipole
 {position{rho=2.5,psi=0.0,marker=d3a}
 properties{r=8.4}
 position{rho=3.0,psi=0.0,marker=d3b}
 }
 dipole ! 4th dipole
 {position{rho=3.5,psi=0.0,marker=d4a}
 properties{r=-8.4}
 position{rho=4.0,psi=0.0,marker=d4b}
 }
 }

And describes a four dipole magnet chicane

 5

with the following parameters:

chicane
bend magnet length (projected) 0.5 m
drift length,(proj.) B1->B2 and
B3->B4

0.5 m

drift length, B2->B3 0.5 m
bend radius 8.4 m
momentum compaction 6 mm

The particles distribution to be tracked is specified next:
!---
! particle distribution
!---
particles{reference_momentum =reference_particle
 reference_point_x =0.0
 reference_point_y =0.0
 reference_point_phi =0.0
 format=fmt1,array=#file{name=in_particles.fmt1}
 }

After some options to change the reference system, the distribution is referenced to the file we
have already seen in the ‘in’ folder. The format is ‘fmt1’ in this case (see section
‘particles’).

The example consists of a Gaussian particle distribution (~1000 particles). Beam parameters are:

bunch
energy 511 MeV
charge 0.833 nC
bunch length (in) 80 µm
bunch length (out) 20 µm
peak current (out) 5 kA
horizontal twiss parameters (in):
normalized emittance 1 mm mrad
alpha 2.2
beta 10 m
particle distribution
number of particles 997
number of slices 83
particles per slice 12

 6

reference particle without charge
sub-bunch length 5.3 µm
sub-bunch width (horizontal) 33 µm
sub-bunch width (vertical) 50 µm

The output of CSRtrack is prompted by so-called monitors: ‘Online monitors’ write data to file
during the tracking, ‘offline monitors’ save data at the beginning or the end (see ‘monitor’)

!---
! online monitors
!---
online_monitor{name=sub_bunch.dat,type=subbunch
 start_time_c0=now
 end_time_marker=d4b,end_time_shift_c0=2.0
 time_step_c0=all
 }
online_monitor{name=steps.dat,type=steps
 start_time_c0=now
 end_time_marker=d4b,end_time_shift_c0=2.0
 time_step_c0=all
 }
online_monitor{name=p1.fmt3,type=phase,format=fmt3,particle=1
 start_time_c0=now
 end_time_marker=d4b,end_time_shift_c0=1.0
 time_step_c0=all
 }
online_monitor{name=x.fmt3,type=phase,format=fmt3,particle=all
 start_time_c0=now
 end_time_marker=d4b,end_time_shift_c0=1.0
 time_step_c0=0.10
 }

!---

where name specifies the file name(s) to write the data to, accordingly the files named
‘sub_bunch.dat’ etc. appear in our ‘out’ folder. Details can be found in the section ‘monitor’;
in the example above data describing sub-bunch length, time-step-width and the phase-space
position of the reference particle along the beam-line are dumped in single files while the x_n
files contain the phase-space coordinates for all particles at positions 10 cm apart from start to
end_time_marker+end_time_shift _c0 [m].

The method to calculate CSR fields and the parameters of the sub-bunches are chosen in the
‘forces’ command:

 ! force definition
!---
forces{type=projected
 sigma_long= 5.3e-6
 }

 7

In this example, the 1-D projected field calculation method is used with a longitudinal size of
5.3μm. See chapter ‘forces’ for details and other field solvers.

Finally, the range for the tracking calculation and the numerical parameters for the self-
consistent, iterative particle tracking are specified:

!---
! tracking
!---
 track_step{precondition=yes
 iterative=2
 error_per_ct=0.001
 error_weight_momentum=0.0

 ct_step_min=0.02
 ct_step_max=0.10
 ct_step_first=0.10
 increase_factor=1.5
 arc_factor=0.3
 duty_steps=yes
 }

 tracker{end_time_marker=d4b,end_time_shift_c0=1.00}

The ‘track_step’ command specifies that iterative tracking will be performed until two
iterations are done or the error criterion is reached. The parameter ct_step_min and the ones
below control the step-width algorithm. For details see section ‘track_step’.

The ‘tracker’ command tells the code to track to the marker ‘d4b’, which is associated with
the end of the last bend (see the lattice definition above) plus an additional time interval which
corresponds to the reference particle traveling the length of 1 m with speed c0
(end_time_shift_c0=1.00). For details see section ‘tracker’.

Finally, another monitor command writes the phase space at the end of the tracking to the file
‘end.fmt3’:

!---
! offline monitors
!---
 monitor{format=fmt3,name=end.fmt3}

The calculation is started by running CSRtrack in the directory with the input file. The
particle distribution is read from in/particles_in.fmt1 and all output files are written to
the directory out. This should create the same files as in the folder out_solved.

 8

2.3. Plotting Results

A MATLAB GUI called ‘CSRtrack_ps_viewer’ is available to plot CSRtrack results.
Download the file ‘ps_viewer.zip’ and extract the files in a folder ‘ps_viewer’. Open MATLAB,
choose that folder as working directory and enter ‘ps_viewer’ on the MATLAB command line.
You should see the following GUI:

Basically there are two axes to plot phase space projections for comparison. Use the ‘Browse’
button to open one of the result files you have in the ‘out’ folder in your CSRtrack_test folder.
The browse window should show the following files:

 9

The ps_viewer reads phase space distributions saved in the CSRtrack formats .fmt1 (like the
input file) or .fmt3. Open the x_0001.fmt3 file and the longitudinal phase space at this position
will appear, after a message box

has informed you that there are 52 files along the beam line. A ‘Movie’ button pops up when
there are more than 3 files of such type and you can push it to see a movie of how the
longitudinal phase space evolves along the chicane.

Other phase space projections can be plotted by using the pull-down menus at the axis’ of the
plot. The following shows the horizontal phase space at the beginning (right) and end (left) of the
chicane (the slider or the editing field can be used to go back and forth between the different
x_nnnn files):

When ‘normal’ transverse phase space (like x-x’, here hor for horizontal and p_hor for
normalized horizontal momentum) is plotted, the emittance and the optics is calculated, else only
the RMS values.

 10

2.4. Calculation of the example with other models for the CSR fields (‘forces’)

2.4.1. With Force Type p_to_p

The command file is the same as for force type = projected with exception of the force
definition:

!---
! force definition
!---
forces{type=csr_p_to_p,shape=ellipsoid
 sigma_long= 5.3e-6
 sigma_rad =33.0e-6
 sigma_vert=50.0e-6
 }

2.4.2. With Force Type g_to_p

The command file is the same as for force type = projected with exception of the force
definition:

!---
! force definition
!---
forces{type=csr_g_to_p,shape=ellipsoid
 sigma_long= 5.3e-6
 sigma_rad =33.0e-6
 sigma_vert=50.0e-6
 }

The dimensions of the sub-bunches are summarized in the following table.

Sub-Bunch Dimensions
sub-bunch length 5.3 µm
sub-bunch width (horizontal) 33 µm
sub-bunch width (vertical) 50 µm

Results for the calculations with the different force types are plotted in the appendix.

 11

2.5. Typical CPU Time and File Structure for the Example

Calculation time (on a PC from 2004) for the projected method is less then 1minute, for
the g_to_p method 30 minutes and for the ‘direct’ p_to_p method 8.5 hours.

examples

projected

csrtrk.in

in

in_particles.fmt1

out

out_solved

log.txt
latout.dat
sub_bunch.dat
steps.dat
x_0001.fmt3 … x_0052.fmt3
end.fmt3

g_to_p

csrtrk.in in out out_solved

p_to_p

csrtrk.in in out out_solved

 12

3. CSRtrack Command Structure

3.1.

3.2.

3.3.

 Command File

CSRtrack reads all commands from the ascii input file ‘csrtrk.in’. It has the following
structure:

commands exit <CR>

with
commands = command [commands]
command = comment / global_command / section
comment = ! text <CR>
separator = <blank> / , / <CR>

The input file can be used to specify and open further input files (see #file). The length of
command lines in input files is limited to 400 characters.

 Sections
section_name { section_body }

A section-call causes three activities:

1) The section is initialized after the opening bracket ‘{’,
2) Global commands and specific section commands are valid in the section body. Section

specific commands are either assignment statements or nested sections. The assignment of
section parameters can be done in any succession. The only exception is the particles
definition (see section particles).

3) The section action is started after the closing bracket ‘}’.

 Global Commands

There is only one global command in version 1.0:
global_command = #file{name = filename}
filename = < name of nested input file >

The #file command opens a nested input file. The commands in this file are processed in the
same way as that in the command file ‘csrtrk.in’. Maximal 10 nested files can be opened at once.
Each nested file has to end with <CR>. After the processing of a nested file, CSRtrack continues
processing of commands in files with higher level or of commands in ‘csrtrk.in’.

CSRtrack searches the input file filename either in the root directory (with ‘csrtrk.in’) or, if
specified, in the input directory that is defined by the section iopath.

 13

4. CSRtrack Sections
section name
io_path file io
lattice lattice definition
particles definition of particle distribution
track_step Time grid, iterative tracking
tracker tracking
forces model for self forces
monitor monitor
online_monitor online monitor

4.1. Section: io_path

The io_path section is used to specify the input- and output-directories. If these directories
are unspecified, input- and output-files are read from or written to the root directory (with
‘csrtrk.in’).

identifier argument unit / type
input input directory character string
output output directory character string
logfile file name character string

Example:
io_path{input =data/bc2/in,
 output =data/bc2/out,
 logfile=log.txt}

has the same effect as:
io_path{logfile=log.txt,
 input =data/bc2/in,
 output =data/bc2/out}

The logfile is written to ‘data/bc2_100/out/log.txt’.

4.2. Section: lattice
subsection name
dipole definition of dipoles

 14

quadrupole definition of quadrupoles
multipole definition of multipoles

a) Concept: CSRtrack supports magnetic dipole- and multipole-fields that are defined in
specified (x,y,z) coordinates. The range of these fields is defined by two field-boundaries that are
perpendicular to the xy-plane. The dipole field between field boundaries is constant and parallel
to the z-axis. Together with the dipoles a reference trajectory is defined that is composed by arcs
and lines and lies in the xy-plane. The first part of the reference trajectory coincides with the x-
axis. The definition of each lattice element has three parts: the definition of the first field-
boundary, the definition of element properties and the definition of the second field boundary.

field boundaries

x

y

z

dipole
Bz

reference
trajectory

multi-
 pole

b) Example:
lattice{
 dipole ! 1st dipole
 {position{rho=0.0 ,psi=0.0,marker=d1a}
 properties{r=-1.66275}
 position{rho=0.5 ,psi=0.0,marker=d1b}
 }
 dipole ! 2nd dipole
 {position{rho=1.0 ,psi=0.0,marker=d2a}
 properties{r=1.66275}
 position{rho=1.5 ,psi=0.0,marker=d2b}
 }
 dipole ! 3rd dipole
 {position{rho=2.463,psi=0.0,marker=d3a}
 properties{r=1.66275}
 position{rho=2.963,psi=0.0,marker=d3b}
 }
 dipole ! 4th dipole
 {position{rho=3.463,psi=0.0,marker=d4a}
 properties{r=-1.66275}
 position{rho=3.963,psi=0.0,marker=d4b}
 }
 }

 15

field boundaries

z

reference
trajectory

y

x0.5 1 1.5 2.463 3.963

0.31156…

4.2.1. Definition of Field-Boundaries (Subsection: position)

identifier argument unit / type
rho value length / number
psi value angle /number
delta_s value length / number
delta_psi value angle / number
marker marker name character string
duty yes / no

The position section is used to define field-boundaries. They can be defined absolute or relative.

a) Absolute definition of field boundaries: The field boundary is defined in polar coordinates by
the parameters rho and psi. The definition of the first field boundary has to be absolute. The
reference trajectory before the first field boundary is identical to the x-axis. The first reference
point is the intersection of the first reference plane and the x-axis. The rest of the reference
trajectory (and all later reference points) are recursively defined by dipoles and their curvature
radii.

x

y

z

field boundary

rho

psi

 16

b) Relative definition of field boundaries: If the position and direction of the reference trajectory
are defined for one field boundary, the position and direction of the intersection with the next
field boundary is uniquely defined by the path-length difference delta_s and the curvature
radius r (if a dipole is bounded). The orientation of the field boundary is either specified by psi
or delta_psi or it is perpendicular to the reference trajectory. Psi defines the absolute
orientation (in the same way as for the absolute definition) and delta_psi defines the angle
between field boundary and the plane perpendicular to the trajectory at the intersection point.

reference trajectory

field boundaries

 delta_s
(path-length difference)

delta_psi

psi

c) marker: The identifier marker is used to assign a name to a field boundary. The marker
names can be used to specify time events eg. The instantaneous time when the reference particle
(see particle definition) passes a field boundary. This identifier is optional, its argument is a
character string.

d) duty: The identifier duty can be used to affect the step width control of the tracking
algorithm (see track_step). This identifier is optional, its argument is yes or no. If duty is
not specified, it is set to yes for field boundaries of dipoles and to no for the rest.

e) Example
position{delta_s=0.2,marker=quad_in,duty=no}

4.2.2. Branch Section: Dipole

subsection name
position definition of field boundaries
properties dipole properties

a) Subsection position: See ‘Definition of Field Boundaries’.

b) Subsection properties:

identifiers argument unit / type
r value length / number

r sets the curvature radius of the reference trajectory. In combination with the reference
momentum (see particles) the strength of the dipole field is uniquely determined. To take

 17

into account vertical effects (z-direction) by edge �pecifie, the tracking algorithm applies a
vertical kick proportional to the offset from x-y-plane at the field boundaries.

field boundaries

z

reference
trajectoryr < 0 r > 0

c) Example:
dipole ! 1st dipole
 {position{rho=0.0 ,psi=0.0,marker=d1a}
 properties{r=-1.66275}
 position{rho=0.5 ,psi=0.0,marker=d1b}
 }

4.2.3. Branch Section: quadrupole

subsection name
position definition of field boundaries
properties quadrupole properties

The definition of quadrupoles is identical to that of multipoles that is described in the next
subsection. The only difference is the parameter poles that obsolete. Example:

quadrupole{ position{delta_s=0.2,marker=quad_in,duty=no}
 properties{strength=0.100,alpha=0
 horizontal_offset=0,vertical_offset=0}
 position{delta_s=0.5,marker=quad_out,duty=no}
 }

4.2.4. Branch Section: multipole

subsection name
position definition of field boundaries

 18

properties multipole properties

a) Subsection position: See ‘Definition of Field Boundaries’.

b) Subsection properties:

identifier argument unit / type
strength value (a) length^(−n) / number
alpha value (α) angle / number
horizontal_offset value (h0) length / number
vertical_offset value (v0) length / number
poles value (2n) integer

The magnetic multipole field is defined in a local specified coordinate system (v,h,s) with its
origin in the intersection point of the reference trajectory and the field boundary:

field boundaries

x

y

z

dipole

reference
trajectory

sh

v

s = longitudinal
h = horizontal
v = vertical (= z)

multi-
 pole

The magnetic field between the field boundaries is independent on the longitudinal coordinate. In
complex notation the horizontal and vertical components BBv and BhB of the field are:

[] []() αjnnr
hv evvjhh

n
a

q
pjBB −−−+−

−
=+ 1

00
)!1(

with q the particle charge, pr the reference momentum, n the azimuthal order, a the multipole
strength, h0, v0 the horizontal and vertical offset and α the skew angle. These parameters are
related to the properties identifiers by:

poles = 2n (= 4 for quadrupoles)
strength = a
horizontal_offset = h0
vertical_offset = v0

alpha = α

The parameters horizontal_offset, vertical_offset and alpha need not to be
specified. Their default is zero.

 19

c) Example:
multipole{ position{delta_s=0.2,marker=quad_in,duty=no}
 properties{poles=4
 strength=0.100,alpha=0
 horizontal_offset=0,vertical_offset=0}
 position{delta_s=0.5,marker=quad_out,duty=no}
 }

4.3. Assignment Section: particles

identifier argument unit / type
format fmt1 / fmt2 / astra
reference_momentum value (pr) /

reference_partice /
average

momentum / number

reference_point_x value (xref) length / number
reference_point_y value (yref) length / number
reference_point_phi value (ϕ) angle / number
array

a) Concept: The particles section is used to define the position, momentum and charge of a
particle distribution in a absolute �pecified coordinate system (xp,yp,zp). The first particle of this
distribution is called reference particle. The reference particle is treated as all other particles, but
some input and output parameters are defined relative to the reference particle. Eg. A time event
may be defined by the transition of the reference particle through a field boundary, or the
coordinates and momenta of other particles are given as increment to that of the reference
particle. The reference momentum relates the lattice settings to absolute field strengths. (The
reference momentum is not necessarily the momentum of the reference particle.) The properties
of the particle distribution as well as the absolute time are defined in an array that is assigned to
array. This assignment is terminated by the closing bracket of the section. Therefore array
has to be the last assignment.

b) (xp,yp,zp)-coordinates: The (xp,yp,zp) coordinate system of the particle definition is related to
the coordinate system of the lattice definition by:

 20

y

x

xp

particles

zp

yp

(xref ,yref)

ϕref

() ()
() ()

p

refppref

refprefp

zz

yyxxy

yyxxx

=

−+−=

−+−=

ϕϕ

ϕϕ

cossin

sincos

c) reference_momentum: The reference momentum is used to relate the curvature radii and
strengths settings (r, strength) in lattice to magnetic field strengths:

reference_momentum = value (pr) /
 reference_particle /
 average

Either the reference momentum is �pecified directly by value, or it is set to the momentum of
the reference particle or to the average momentum of all particles.

d) format and array: Three different input formats are available to define particle
distributions:

Format 1:

nnnnnnn

rrrrrr

qpzpypxzyx

qpzpypxzyx
qpzpypxzyx
qpzpypxzyx
rrrrrrt

δδδδδδ

δδδδδδ
δδδδδδ

L
3333333

2222222

1

654321

format = fmt1
array =

nnnnnnn

rrrrrr

qpzpypxzyx

qpzpypxzyx
qpzpypxzyx
qpzpypxzyx
rrrrrrt

δδδδδδ

δδδδδδ
δδδδδδ

L
3333333

2222222

1

654321

format = fmt1
array =

The arguments of the array command are processed in the same way as the rest of the
command file. Therefore the input can be directed to an other input file by the global command

#file{name = filename}

and comments as well as all CSRtrack separators are valid. The end of the argument list is
defined by the closing bracket of the particles section. In format 1 CSRtrack expects
7(N+1) numerical arguments. The first number t defines the time of the distribution. The next six
values (r1, r2, r3, r4, r5, r6) have no meaning and do not affect the result of the calculation. The

 21

triplets (xr, yr, zr), (pxr, pyr, pzr) define the position and momentum of the reference particle in
(xp, yp, zp)-coordinates. Q1 is the charge of the reference particle. Each further particle is defined
by an additional set of numbers (δxi, δyi, δzi, δpxi, δpyi, δpzi, qi) with the position (xr+δxi, yr+δyi,
zr+δzi), the momentum (pxr+δpxi, pyr+δpyi, pzr+δpzi) and the charge qi.

Format 2:

format = fmt2
array =

nnnnnnn

rrrrrr

qpvphpsvhs

qpvphpsvhs
qpvphpsvhs
qpzpypxzyx
rrrrrrt

δδδδδδ

δδδδδδ
δδδδδδ

L
3333333

2222222

1

654321

format = fmt2
array =

nnnnnnn

rrrrrr

qpvphpsvhs

qpvphpsvhs
qpvphpsvhs
qpzpypxzyx
rrrrrrt

δδδδδδ

δδδδδδ
δδδδδδ

L
3333333

2222222

1

654321

The structure of format 2 is the same as for format 1. Position and momentum of the reference
particle are defined as before. For all other particles the position- and momentum-differences to
the reference particle are given in (s, h, v) coordinates. The direction of the s-axis is defined by
the direction of the reference particle. The orthogonal h- and v-directions follow from:

vihisirefi

vihisirefi

hsv

szh

particlereferenceparticlereferences

pvphps

vhs

p

uuupp

uuurr

uuu

uuu

pu

δδδ

δδδ

+++=

+++=

×=

×=

= __

Astra-Format:
format = astra

Astra coordinates are converted to CSRtrack coordinates by the permutation: (z,x,y)Astra →
(xp,yp,zp).

e) Example:
particles{reference_momentum =reference_particle
 reference_point_x =0.0
 reference_point_y =0.0

 22

 reference_point_phi =0.0
 format=fmt1,array=#file{name=particles_bc2.fmt1}
 }

4.4. Section: track_step

identifier argument unit / type
precondition yes / no
iterative value (it) integer ≥ 1
error_per_ct value (err) time^-1 / number > 0
error_weight_mo
mentum

value (wmom) number ≥ 0

ct_step_min value (tmin) time / number ≥ 0
ct_step_max value (tmax) time / number ≥ 0
ct_step_first value (tfirst) time / number ≥ 0
duty_steps yes / no
increase_factor value (finc) number ≥ 1
arc_factor value (farc) number ≥ 1
time_grid_file file name character string
steps_tolerance value (tol) time / number > 0

a) Concept: CSRtrack calculates self-forces on a time grid and interpolates them linearly for
particle tracking. The section track_step is used to control the time grid as well as the
tracking from one grid point to the next. There are two possibilities to determine the time grid or
the widths of time steps: either an external file defines the grid directly or the step widths are set
recursively. For a new force calculation the phase space coordinates all particles have to be
known, but they depend on the force that has to be determined. This implicit problem is solved
recursively (iterative tracking). The time steps and the parameters for iterative tracking are
crucial for the accuracy of the calculation. The track_step settings can be redefined eg.
Before a consecutive call of the tracker section.

b) time_grid_file: The time grid can be defined directly by the uses of a file with time grid
values. The filename and a tolerance parameter are set by the following commands:

time_grid_file = file name
steps_tolerance = value (tol)

CSRtrack expects an ascii input file with the specified name in the input- or root-directory (see
io_path). It reads a list of time grid values, one value per input line with the time unit (1 m /
c0).

 23

t

time grid (from file)

tpart
(time of particle distribution

before tracking)

tend
(end time specified

in tracker)

tolerance first step last step

4

CSRtrack processes time grid values between the actual time associated to the particle
distribution (tpart) to the end time (tend) that is defined in the section tracker. Time grid values
are ignored if they need steps smaller than the tolerance parameter. The tolerance parameter (tol)
is used to avoid a first step of zero length or to avoid extremely small steps.

For the preparation of the time grid, the user has to take care about the position of the particles
distribution in the lattice. The steps-monitor (see online_monitor, type=steps) can be
used to support this task. E.g. a new time grid can be derived from an old one that was generated
by a calculation with recursive step widths control.

c) Recursive calculation of time steps: The automatic time stepping is active if no time grid file
is specified. It is controlled by the parameters

ct_step_max = tmax
ct_step_min = tmin
ct_step_first = tfirst
duty_steps = yes / no
increase_factor = finc
arc_factor = farc

If duty_steps is set to ‘no’ or if no field boundary is passed during the track step CSRtrack
uses time steps longer or equal tmin. The maximal time step is limited by min(tmin, tarc) with tarc =
farc 3

rms24 σcR with Rc the actual curvature radius of the trajectory and σrms the (actual) rms
length of the particle distribution. It starts with a step of the length tfirst and increases it for each
new step by the factor farc until it is limited by min(tmin, tarc).

The time dependency of forces is usually slowly compared to the bunch length. Transition
processes are typically of the order of the formation time 3

rms
1 24 σcRc ⋅− . This is different if the

bunch shape or the curvature radius change rapidly. The duty_steps command is used to
consider fast transient processes (especially of radial forces) at field boundaries. CSRtrack uses
extra grid points for the transition of field boundaries if duty_steps is set to ‘yes’. At these
points the complete particle distribution is either directly before or directly after a field
boundary. (Duty steps at a particular field boundary can be disabled by the duty command in
the position section.) The recursive step algorithm is forward looking: it uses steps that are

 24

shorter than allowed if this helps to avoid a very short step before the end point (defined in
section tracker) or a duty point.

t

recursive (automatic) time steps

tpart
(time of particle distribution

before tracking)

tend
(end time specified

in tracker)

f.b. f.b.

first step last step
duty steps

d) Iterative tracking: To integrate the equation of motion from on grid point (t1) to the next (t2)
CSRtrack needs the self forces f(t) to all particles in the complete time interval t1 ≤ t ≤ t2. They
are approximated by a linear interpolation between f1 = f(t1) and f2 = f(t1). As f2 depends on
unknown phase space coordinates xph,2 = xph(t2) they are estimated by and are improved to

 by iterative tracking. The first estimation is calculated with force .

)(
2,

n
phx

)1(
2,

+n
phx)1(

2,phx 0f =)0(
2

1,11 ,, phxft

2t

1,phx)1(
2,phx

tracker

()
12

12)(
tt
ttt

−
−

=
ff

)1(
2,phx

first step

 25

1,11 ,, phxft

)(
2,2 , n

pht x
force_type

1,phx)1(
2,

+n
phx

tracker

() ()
12

2112)(
tt

ttttt
−

−+−
=

fff

)force_type,,()(
2,2

)(
2

n
ph

n t xff =

error
)(

2,
n

phx

)(
2

)1(
2, , nn

ph fx +

error

one step

CSRtrack repeats the iterative tracking until the error criterion (set by error_per_ct) is
fulfilled or the maximal number of iterations (set by iterative) is reached.

22, ,fx ph

error

1,11 ,, phxft

force_type 2t

criterion
iterative

no

force_type
= projected)pr.,,(22,2

)(
2,2,

tph

n
phph

xff

xx

=

=

)1(
22

)(
2,2,

−=

=
n

n
phph

ff

xx

no

yes
error > err·(t1-t2)

and n ≤ it

one step

first step

yes

n = n + 1

n = 1

As the field computation for force_type = projected is very efficient, CSRtrack calculates
, for this type and uses ,

otherwise. (The force_type is set by the command type in the forces section.)

)(
2,2,

n
phph xx =)projected,,()(

2,22
n

pht xff =)(
2,2,

n
phph xx =),,()1(

2,22 L−= n
pht xff

e) Iterative tracking with precondition: The forces section provides several models for the
calculation of self forces, e.g. type = projected / csr_p_to_p / csr_g_to_p. As
the ‘projected’ model needs much less numerical effort then the other models, it could be helpful
to use phase space coordinates that have been computed by iterative tracking with this 2,phx

 26

method to improve the start estimation for other methods. This option is activated or deactivated
by the command

precondition = yes / no

f) Error criterion: The accuracy parameter is set by the command

error_per_ct = err
error_weight_momentum = wmom

The (relative) error citerion is

⋅−<+)(),(12
)1(

2,
)(

2, tterror n
ph

n
ph xx err

()
()

()
()

()
()2)1()1(

2)()1(

2)1()1(

2)()1(

2)1()1(

2)()1(

)1(
2,

)(
2,),(

++

+

++

+

++

+

+

−

−
+

−

−
+

−

−
=

n
s

n
s

n
s

n
s

mom
nn

nn

nn

nn

n
ph

n
ph

pp

pp
w

hh

hh

ss

ss
error xx

with s, h and ps the longitudinal-, horizontal- and momentum offset of all particles with respect
to the reference particle. The operator x averages phase space coordinates without weighting
by particle charges.

g) Example:
track_step{ct_step_min=0.02
 ct_step_max=0.20
 ct_step_first=0.20
 increase_factor=2.0
 arc_factor=0.3
 duty_steps=yes

 iterative=2
 error_per_ct=0.001
 error_weight_momentum=0.1
 precondition=yes
 }

The sum of the relative errors of all track steps from tpart (start time) to tend is below err·(tend −
tpart). For a chicane with a path length of about 5m the simulated time interval will be similar (≅ 5
m/c) . Therefore the sum of relative errors is below 0.005 for err = 0.001. Note that the
parameter err controls errors due to iterative tracking and not the error related to the quality of
the time grid.

 27

4.5. Section: tracker

identifier argument unit / type
end_time_c0 value (tend) time / number
delta_time_c0 value (dtend) time / number
end_time_marker marker name character string
end_time_shift_c0 value (tshift) time / number

The particle tracking is activated by the tracker section. There are three possibilities to define
the time end (tend) of the calculation: either directly by the command

end_time_c0 = tend

or incremental by

delta_time_c0 = dtend = tend − tpart

or by reference to a field boundary with marker (see position section)

end_time_marker = marker name
end_time_shift_c0 = tshift

The last option defines the time end relative to the time tfb when the reference particle travels
through the field boundary which is specified by marker name:

tend = tfb + tshift

If the time grid is defined by an external file (see section track_step, command
time_grid_file) the tracking is executed until the last grid value before or equal to the end
time is reached. Otherwise the recursive time step algorithm generates time steps that end exactly
at tend. The tracker section can be called more then once. Before a consecutive call of the
tracker section it is for example possible to modify track_step parameters or to call the
monitor section.

 28

t

tpart
(time of particle distribution

before tracking)

tend
(end time specified

in tracker)

f.b.

ref. particle

tfb

dtend

tshift

Example:
tracker{end_time_marker=d4b,end_time_shift_c0=0.10}

 29

4.6. Section: forces

identifier argument unit / type
type none /

projected /
csr_p_to_p /
csr_g_to_p /
csr_p_to_m /
csr_g_to_m

shape sphere /
ellipsoid

sigma_long value (σ||) /
relative /
file

length / number > 0

relative_long value (σ||rel) number > 0
sigma_rad value (σr) /

file
length / number > 0

sigma_vert value (σv) /
relative /
file

length / number > 0

relative_vert value (σvrel) number > 0
sigma_file file name character string
shield
shield_max
use_old_mesh yes / no
par1
par2 M integer > 0
par4 number
par5 number
wake_file file name character string

 30

4.6.1. Introduction to the Different CSR Models

CSRtrack provides several models for the calculation of self-forces. The type of the model is
specified by the command type with the possible choices:
 none / projected / csr_p_to_p /csr_g_to_p /csr_p_to_m / csr_g_to_m

The parameter none causes particle tracking without self forces. If type is set to projected,
CSRtrack uses a simple and very efficient model that neglects transverse dimensions of the
source distribution, transverse forces, the transverse dependency of longitudinal forces as well as
space charge effects. This model is based on a gaussian sub-bunch approach: all source particles
are replaced by sub-bunches with corresponding strengths and longitudinal offsets. Therefore the
three dimensional distribution of point particles is approximated by a smooth line charge density.
The calculation of longitudinal fields neglects deformations of the retarded density function.

The method ‘csr_p_to_p’ replaces all source particles by three dimensional gaussian sub-
bunches with individual strength and trajectory but with the same shape. It neglects vertical
offsets and vertical particle motion. As all ‘point’ to point (or more precise sub-bunch to point)
interactions have to be calculated, the numerical effort increases quadratically with the number
of particles. The method ‘csr_g_to_p’ is based on the same sub-bunch approach and the same
‘point’ to point interactions, but it uses a pseudo green’s function for the field of a sub-bunch.
Before each computation of ‘point’ to point interactions, the electromagnetic field is calculated
on a mesh in the horizontal plane for a ‘typical’ sub-bunch. The trajectory of other sub-bunches
can be fitted to the trajectory of the ‘typical’ sub-bunch by a coordinate transformation. The
same transformation is used to calculate the electromagnetic fields of other sub-bunches from the
meshed field.

New in version 1.2 are csr_p_to_m and csr_g_to_m. They have the same effect as
csr_p_to_p and csr_g_to_p, but the forces are calculated from meshed electromagnetic
field values.

4.6.2. Parameters for the projected Force

This model uses one dimensional Gaussian sub-bunches. There are three possibilities to define
their longitudinal rms length. Either the longitudinal size σ|| is set directly by the command

sigma_long = σ||

or it is defined relative to the rms length of the particle distribution by
sigma_long = relative
relative_long = σ||rel

or it is set by an input file with
sigma_file = file name
sigma_long = file

 31

The last two possibilities allow to use sub-bunch dimensions that depend on time. The
calculation of fields with time dependent sub-bunches neglects the change of the bunch length at
retarded times. The use of bunch dimension files is described below.

4.6.2.1. Current Smoothing: Gauss Filter and Position Averaging

The input for the 1d-current smoothing algorithm are the longitudinal position and charge
 of each particle. The continuous current is calculated as

νz

νq

()2,ˆ)(||0 σνν zzhqczI −= ∑ with () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

2

2
1exp

2
1,

σπσ
σ zzh .

The sub-bunch length ||σ is controlled by sigma_long, or, if specified, by a data file (see
previous paragraph). Usually the longitudinal positions and are identical. νz νẑ

For non-systematic phase space distributions (random initial distribution, identical charge of
all particles) a slight manipulation of the longitudinal particle positions helps to reduce the
noise. This is for example possible by position averaging:

∑
−=+

=
m

m

M z
m

z
νμ

μν 12
1)(with ⎣ ⎦2Mm = ,

supposed the particles are sorted by the longitudinal position. CSRtrack uses the superposition of
two averaging operations:

)5.1()8.0(

3
1

3
2ˆ MM zzz ννν += .

Position averaging is activated by setting the optional parameter par1 in the forces section to
1. The value of M has to be assigned to a second optional parameter par2.

Example:
forces{type=projected sigma_long=0.000008 par1=1 par2=10000}

The effect of the position averaging on the beam distribution is shown in the appendix.

 32

4.6.2.2. Projected Force and Wake per Length

In combination with the self-force of type projected it is possible to define and use a position
independent longitudinal wake. This can be used to estimate the effect of the resistive wall wake.

The wake per length is defined by an ascii file with a table in the following format: each line
has to end with <CR>. Each line that includes the comment character ! is ignored. The
numerical input (one number per line) is read from all other lines. The first number of the table is
the rms sub-bunch length tableσ for which the wake potential has been calculated. The second
number is the step width tableδ of the table and the next two integers and define the
longitudinal position of the first and last point in the table (

ai bi

aitableδ , bitableδ). The next ab ii −+1
numbers are the values of wake table (unit: V/(Cm)).

In the calculation loop that is processed in the tracker section CSRtrack determines for
each step the sub-bunch length ||σ as specified and calculates the longitudinal current as

described above. If the sub-bunch length

)(zI

tableσ is smaller than 2||σ the wake 2||σW is

calculated by a convolution. If tableσ is larger than required CSRtrack uses the tabulated wake
with modification and warning. Therefore the longitudinal self-field is calculated by the
following convolution:

() () () ()(){ }∫ ξξξξ σσ dWbEazIzEc 2||2|||| ⋅+⋅−=

with a = 1 − par4 and b = 1 − par5. The name of the file with the tabulated wake as well as the
parameters par4 and par5 can be set in the forces section. The definition of a wake table is
optional, the default values of par4 and par5 are zero.

Example:
forces{type=projected sigma_long=0.000008 par1=1 par2=10000
 shield=0.008
 wake_file=wake_cu_flat_2x4mm.dat
 }

4.6.3. Parameters for the csr_p_to_p and csr_g_to_p Forces

These models use Gaussian sub-bunches that are either spheres or ellipsoids:
shape = sphere / ellipsoid

The radius of spherical sub-bunches is defined in the same way as the longitudinal dimension of
sub-bunches of the projected force. Ellipsoidal bunches have three rms parameters: the
longitudinal size σ||, the horizontal (or radial) size σr and the vertical size σv. σ|| and σv are either
set directly, or relative to the corresponding rms dimension of the particle distribution, or by an

 33

input file with sub-bunch dimensions. σr is either defined directly of by file. The calculation of
fields with time dependent sub-bunches neglects the change of the bunch length at retarded
times. The use of bunch dimension files is described below.

4.6.4. Additional Parameters for the csr_p_to_m and csr_g_to_m
Forces

Beyond the parameters above, sbox and rbox can be used to modify the longitudinal and
radial step width of the (equidistant) mesh. The step widths are: Δs = sbox⋅σ||, Δr = rbox⋅σr
with σ||, σr the longitudinal and radial rms dimension of the sub-bunches. The default values are
sbox = 0.5, rbox=0.5. Mesh field values are used only for cells with at least four particles
(observers) per cell, otherwise the field values are calculated directly. The additional output per
calculation step looks like this:

ctstep= 0.03000 - ct= 10.77925
 *** step_error/step_time= 4.98611017E-05
boxes = 1961 e_points= 5027 p_points= 7886
 step_error/step_time= 0.00198496122
boxes = 1960 e_points= 5026 p_points= 7887
 step_error/step_time= 6.39205063E-07
ctstep= 0.02581 - ct= 10.80506
 *** step_error/step_time= 5.22485114E-05
boxes = 1992 e_points= 5070 p_points= 7712
 step_error/step_time= 0.00203230079,

where ‘boxes’ is the number of mesh cells (with at least four particles) that are calculated,
‘e_points’ is the number of edge points of these cells and ‘p_points’ is the number of
particles (observers) that are calculated directly.

Sometimes it is possible to reuse the Green’s function (for forces csr_g_to_p and
csr_g_to_m) for successive tracking iterations (e.g. if sufficient memory space is available to
store the function on the complete mesh). The command use_old_mesh = yes/no can be
used to enable/disable this possibility.

4.6.5. Shielding

the commands shield= … and shield_max=… are used to specify shielding by perfect
conducting horizontal planes; shield defines the distance h between the conducting planes and
shield_max defines the maximal vertical distance to which mirror charges are taken into
account.

 34

Work in progress: the mesh of the Green’s function is not optimized for wave fronts that are
created by mirror charges; therefore the global mesh density is increased. This solution is not
optimal concerning mesh resolution and computational efficiency.

Attention: Shielding causes a dispersive propagation of electromagnetic fields; a time grid (see
track_step) that works for calculations without shielding is not necessarily sufficient with
shielding (and otherwise); it is recommended to observe the particle coordinates and forces at
few test particles for all time steps (see online_monitor, type = phase, particle =
m) and to adjust the grid if required.

4.6.6. Setting Sub-bunch Sizes from File

Sub-bunch sizes can be defined directly by file. The file name is set with the command

sigma_file = file name

CSRtrack expects an ascii input file with the specified name in the input- or root-directory (see
io_path). It reads a list of values for time and dimensions (units = time, length, length, length):

t1 σ||1 σr1 σv1

t2 σ||2 σr2 σv2

t3 σ||3 σr3 σv3

t4 σ||4 σr4 σv4
...
tn σ||n σrn σvn

(Each input line has to start with four numbers, the rest is ignored.) The sub-bunch dimensions
are calculated by linear interpolation along the time axis (see track_step, time grid). The
interpolated longitudinal dimension is used if the argument file is assigned to sigma_long.
Corresponding assignments can be used for the transverse dimensions. The output file created by
the steps-monitor (see online_monitor, type=steps) can be used as sub-bunch
dimension file, e.g. to perform calculations with exactly the same dimensions a in an earlier run.

 35

4.6.7. Examples

The CSR field of ellipsoidally shaped sub-bunches is calculated with the Green’s function
method (csr_g_to_p). The bunch length at different positions along the beam line is read
from the file my_file.dat, the horizontal size is fixed and the vertical scales with the vertical
size of the beam:

forces{type=csr_g_to_p,
 shape=ellipsoid
 sigma_file=my_file.dat
 sigma_long=file
 sigma_rad =0.0003
 sigma_vert=relative,relative_vert=1.0
 }

If meshed forces and shielding are used, the general format of the forces section will look like
this:

forces{type = ...,
 sbox = ..., rbox=...,
 use_old_mesh = ...,
 shield= ..., shield_max=... }

4.7. Sections: monitor and online_monitor

a) Concept: The monitor section is used to write particles properties and forces before or after
a tracking calculation to file while monitors defined in the online_monitor section are
served during the tracking. As fields and forces are calculated during the tracking, which is
activated in the tracker section, they are undefined before the tracker section has been
called.

b) monitor section:

identifier argument unit / type
name file name character string
format fmt1 / fmt2 / fmt3

The name of the output file is defined by name = file name. The file formats are described
below.

c) online_monitor section:

identifier argument unit / type
name file name character string
type phase /

subbunch /

 36

steps

format fmt1 / fmt2 / fmt3
particle value (m) integer
start_time_c0 value (tstart) /

now

time / number

start_time_marker marker name character string
start_time_shift_c0 value (dtstart) time / number
end_time_c0 value (tend) time / number
end_time_marker marker name character string
end_time_shift value (dtend) time / number
time_step_c0 value (tstep) /

all
time / number

There are three different monitor types:
type = phase / subbunch / steps

The type phase is used to monitor properties of an individual particle or of the complete
distribution.

d) Monitor Events: Online monitors are served during the tracking each time when a monitor
event is fulfilled. In principle monitor events are defined by the start time tstart, end time tend and
time step tstep, but the so defined monitor grid does usually not coincide with the time grid
defined in the section track_step. Therefore monitor events are related always to the next
following point on the time grid. tstart and tend can be specified either directly by

start_time_c0 = tstart / now
end_time_c0 = tend

or by reference to a field boundary with marker:

start_time_marker = marker name
start_time_shift_c0 = dtstart
end_time_marker = marker name
end_time_shift_c0 = dtend

The second possibility defines the time relative to the time tfb when the reference particle travels
through the field boundary which is specified by marker name:

tstart = tfb + dtstart and/or tend = tfb + dtend

The time step is defined by

time_step_c0 = tstep / all

The argument all has the effect that all points on the time grid are monitored.

 37

t

time grid

t

monitor grid

time gridtime grid

tt

startt endtstept

monitor events 1 2 3 4 5 6

t

monitor grid

monitor events 1 2 3 4 5 6

t

monitor grid
startt endtstept

monitor events 1 2 3 4 5 6

e) Name convention for output files: Phase monitors of the full particle distribution
(type=phase, particle=all) create for each monitor event an individual file. The file
name is derived from the argument of the name command and the event number as follows:

name=<string>.<extension>

1st monitor event → file name = <string>0001.<extension>
2nd monitor event → file name = <string>0002.<extension>
3rd monitor event → file name = <string>0003.<extension>
...

The numbering of monitor events depends on the definition of tstart and tstep that can be defined
individually for different monitors. Therefore events with the same number that have been
recorded by different monitors do not necessarily coincide.

f) Example:
online_monitor{name=x.fmt3,type=phase,format=fmt3,particle=all
 start_time_c0=now
 end_time_marker=d4b,end_time_shift_c0=1.0
 time_step_c0=0.02
 }

4.7.1. online_monitor: type=phase

Writes files containing phase space information of all or selected particles.

a) format = fmt1 , particle = all: This format is compatible to the corresponding
input format of the particles section. The output file can be used as input file for a later
(restarted) calculation. Each line of the output file is written with the fortran format
(7(1x,e22.15)). The last six numbers in the first line (r1, r2, r3, r4, r5, r6) are set to zero.

b) format = fmt2 , particle = all: This format is compatible to the corresponding
input format of the particles section. The output file can be used as input file for a later

 38

(restarted) calculation. Each line of the output file is written with the fortran format
(7(1x,e22.15)). The last six numbers in the first line (r1, r2, r3, r4, r5, r6) are set to zero.

c) format = fmt3 , particle = all: Each line of the output file is written with the
fortran format (10(1x,e22.15),2(1x,i1)). The output file has the following structure:

ntnsnvnhnsnnnnnnn

tsvhs

tsvhs

tsvhsrrrrr

zrsr

LLfffqesvvhh

LLfffqesvvhh
LLfffqesvvhh
LLfffqevvhh

t

,,,,,

3,3,3,3,3,3333333

2,2,2,2,2,2222222

1,1,1,1,1,10
0000000

δ

δ
δ
δ

σσσγ

′′

′′
′′
′′

L

t is the time of the distribution. γr is the Lorentz factor γ that corresponds to the reference
momentum (see particles section). σs, σr, and σz are the longitudinal, radial and vertical rms
sub-bunch dimensions that were used for the force calculation (see forces section). The
particle coordinates (hi, vi, si) and slopes (hi’, vi’) are defined relative to the reference trajectory
and the reference particle: (hi, hi’) are horizontal parameters, (vi, vi’) are the offset and slope in
vertical- or z-direction and si is the path-length difference with respect to the reference particle.
δei is the relative energy deviation normalized to the energy that corresponds to the reference
momentum. (fs,i, fh,i, fv,i) are the force components with:

ivivihihisisi

ihisiv

iszih

iiis

fff

p

,,,,,,

,,,

,,

,

uuuf
uuu

uuu
pu

++=

×=

×=

=

In the present version of CSRtrack there is no input format available that allows to set or reset
the source and test flags (Ls,i, Lt,i). Therefore they are always set (=1). The source flag
determines if a certain particle contributes to the generation of self-fields or not. A particle is
tracked with self and external forces if the test flag is set, otherwise only external fields affect the
motion of this particle.

ref. particle
particle i

hi

Sr Si si = Si − Sr

atan(hi’)

 39

d) format = fmt1, particle = m: For each monitor event, a new line with the actual
phase space information of particle m is added to the output file. The file is of the following
structure:

L
m

t
m

t
m

t
m

t
m

t
m

t
m

m
t

m
t

m
t

m
t

m
t

m
t

m

m
t

m
t

m
t

m
t

m
t

m
t

m

qpzpypxzyxt
qpzpypxzyxt
qpzpypxzyxt

)3()3()3()3()3()3(
3

)2()2()2()2()2()2(
2

)1()1()1()1()1()1(
1

δδδδδδ
δδδδδδ
δδδδδδ

The first column (t1, t2, t3 …) is the time of the monitor event (unit = time). The next seven rows
describe the position, momentum and charge in the same way as for the corresponding input
format (fmt1, xp, yp, zp-coordinates). This means the coordinates of the reference particle (m = 1)
are absolute, the coordinates of all other particles (m > 1) are relative to the reference particle.

e) format = fmt2, particle = m: For each monitor event, a new line with the actual
phase space information of particle m is added to the output file. The file is of the following
structure:

L
m

t
m

t
m

t
m

t
m

t
m

t
m

m
t

m
t

m
t

m
t

m
t

m
t

m

m
t

m
t

m
t

m
t

m
t

m
t

m

qpvphpsvhst
qpvphpsvhst
qpvphpsvhst

)3()3()3()3()3()3(
3

)2()2()2()2()2()2(
2

)1()1()1()1()1()1(
1

δδδδδδ
δδδδδδ
δδδδδδ

The first column (t1, t2, t3 …) is the time of the monitor event (unit = time). The next seven rows
describe the position, momentum and charge in the same way as for the corresponding input
format (fmt2). This means the coordinates of the reference particle (m = 1) are absolute, the
coordinates of all other particles (m > 1) are relative to the reference particle (us, uv, uh-base).

f) format = fmt3, particle = m: For each monitor event, a new line with the actual
phase space coordinates and forces of particle m is added to the output file. The file is of the
following structure:

L
mtms

t
mv

t
mh

t
msm

t
m

t
m

t
m

t
m

t
m

t
m

mtms
t
mv

t
mh

t
msm

t
m

t
m

t
m

t
m

t
m

t
m

mtms
t
mv

t
mh

t
msm

t
m

t
m

t
m

t
m

t
m

t
m

LLfffqesvvhht
LLfffqesvvhht
LLfffqesvvhht

,,
)3(

,
)3(

,
)3(

,
)3()3()3()3()3()3(

3

,,
)2(

,
)2(

,
)2(

,
)2()2()2()2()2()2(

2

,,
)1(

,
)1(

,
)1(

,
)1()1()1()1()1()1(

1

′′
′′
′′

The first column (t1, t2, t3 …) is the time of the monitor event (unit = time). The next eleven rows
describe the position, momentum, charge and force in the same way as for the corresponding
input format (fmt3).

 40

4.7.2. online_monitor: type = subbunch

Writes a file containing the sub-bunch dimensions along the beam line.

4.7.3. online_monitor: type = steps

Writes a file containing the (longitudinal) position at the end of each calculation step, the
tracking error at this position and the number of tracking iterations.

 41

5. Appendix

5.1. CSRtrack Units

dimension normalization
length 1 m
time 1 m / c0

momentum 1 eV / c0

charge 1 C
angle 1 deg

5.2. Results for Example Case

Comparison of calculations with force types p_to_p, g_to_p and projected. The data
points for force type p_to_p are plotted in red, for g_to_p in blue and for projected in
green. Usually the red points are hidden by the blue ones.

 42

Caption:

 43

5.3. Example for Position Averaging Pulse Smoothing Technique

 44

5.4. Fixed Bugs

In Version 1.0:

The sub-bunch length for the self-force of type projected was slightly wrong: the longitudinal
self-field Ec|| is calculated as convolution of the longitudinal 1d-current I|| with the CSR-field

2||σE of a Gaussian sub-bunch. The 1d-current I|| is computed on an equidistant mesh by

substitution of all point particles by sub-bunches of the length 2||σ . By mistake the sub-bunch

length for the calculation of 2||σE was ||σ instead of 2||σ . Therefore the effective sub-

bunch length was ||||2
1 22.11 σσ ≈⋅ instead of ||σ . This has been fixed.

6. Bibliography
[1] E. Saldin, E.Schneidmiller, M.Yurkov: Radiative Interaction of Electrons in a Bunch Moving

in an Undulator. NIM A417 (1998) 158-168.

[2] M. Dohlus: Two Methods for the Calculation of CSR Fields. TESLA-FEL-2003-05

[3] M. Dohlus, A. Kabel, T. Limberg: Efficient Field Calculation of 3D Bunches on General
Trajectories. NIM A445 (2000) 338-342.

 45

	
	1. Introduction and Code Improvements
	1.1. Changes in Version 1.1:
	1.2. Changes in Version 1.2:
	2. First Steps to run CSRtrack on a WINDOWS XP Computer
	2.1. Download, Installation and a First Run
	2.2. The Example Input (File)
	2.3. Plotting Results
	2.4. Calculation of the example with other models for the CSR fields (‘forces’)
	2.4.1. With Force Type p_to_p
	2.4.2. With Force Type g_to_p

	2.5. Typical CPU Time and File Structure for the Example

	3. CSRtrack Command Structure
	3.1. Command File
	3.2. Sections
	3.3. Global Commands

	4. CSRtrack Sections
	4.1. Section: io_path
	4.2. Section: lattice
	4.2.1. Definition of Field-Boundaries (Subsection: position)
	4.2.2. Branch Section: Dipole
	4.2.3. Branch Section: quadrupole
	4.2.4. Branch Section: multipole

	4.3. Assignment Section: particles
	4.4. Section: track_step
	4.5. Section: tracker
	4.6. Section: forces
	4.6.1. Introduction to the Different CSR Models
	4.6.2. Parameters for the projected Force
	4.6.2.1. Current Smoothing: Gauss Filter and Position Averaging
	4.6.2.2. Projected Force and Wake per Length

	4.6.3. Parameters for the csr_p_to_p and csr_g_to_p Forces
	4.6.4. Additional Parameters for the csr_p_to_m and csr_g_to_m Forces
	4.6.5. Shielding
	4.6.6. Setting Sub-bunch Sizes from File
	4.6.7. Examples
	

	4.7. Sections: monitor and online_monitor
	4.7.1. online_monitor: type=phase
	4.7.2. online_monitor: type = subbunch
	4.7.3. online_monitor: type = steps

	5. Appendix
	5.1. CSRtrack Units
	5.2. Results for Example Case
	5.3. Example for Position Averaging Pulse Smoothing Technique
	5.4. Fixed Bugs

	6. Bibliography

