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2K. Buesser Electron-Positron Linear Collider

Schedule

 Introduction

 Global Context

 Physics Case

 ILC Accelerator Design

 CLIC Acceleration Principle

 ILC Detectors

 Outlook
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Introduction
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The Standard Model of Particle Physics

 Extremely successful description of the microcosm

 12 matter particles

 4 force mediators

 1 missing piece: 

Higgs Boson

 No significant 

deviation found in

many precision

measurements under

hypothesis Higgs boson

being relatively light
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The Higgs-Boson

 Where is the Higgs-Boson?

 Direct searches done at LEP, still ongoing at 

Tevatron and just started at LHC

 Indirect searches point to low mass Higgs
5
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Does SUSY exist?

 Supersymmetry relates 

bosons and fermions

 It must be a broken 

symmetry – otherwise we 

would have found SUSY 

particles

 New particle spectrum

 Neutral SUSY particles 

are strong candidate for 

dark matter!
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 Electron positron colliders:

 Energy range limited (by RF 

power)

 Point-like particles, exactly 

defined initial state quantum 

numbers and energies

 Hadronic final states easy

 Precision machines

 Discovery potential

 Proton (anti-) proton colliders:

 Energy range higher (limited by 

magnet bending power) 

 Composite particles, different initial 

state constituents and energies in 

each collision

 Hadronic final states difficult

 Discovery machines

 Excellent for some precision 

measurements

p p e+ e-

Hadron and Electron Machines
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Protons vs Electrons

pp  H + X e+e-
 HZ
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ILC Requirements 

ZHH

 The e+e- cross section drops ~1/s

 The key parameters for a com-
petitive e+e- machine are

 energy reach

 Luminosity

(LEP2 had integrated luminosity of

~ 700 pb-1/expt; 

peak luminosity ~1032 cm-2s-1 )

Reminder:

Nint = σ ∫Ldt

1 pico-barn = 10-36 cm2
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ILC baseline parameters

• CMS energy (max.): 500 GeV

• Luminosity (peak): 2 x 1034 cm-2s-1

∫Ldt = 500 fb-1 (4 yrs)

• e- polarisation: ≥ 80%

• One IR with 14 mrad beam crossing angle

Upgrade:

• Energy up to 1 TeV

• ∫Ldt = 1 ab-1 (3-4 yrs)
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Cost Scalings for Storage Rings

 Cost for RF: 

€RF ~ E4/r

 Linear costs (tunnelling, beam line, etc.):

€lin ~ r

 Total cost:

€tot = €RF+ €lin ~ E2

ropt ~ E2

For details check: B. Richter, NIM 136 (1976) pp. 47-60
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Scaling LEP

12

 The next high-energy 

e+e- collider will have to 

be linear:

 €
LC

~ E

€LC~ E€LC~ E
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The Global Context
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Linear Collider Developments

 International Linear Collider ILC

 superconducting acceleration

 31.5 MeV/m, 1.3 GHz

 advanced design (c.f. XFEL)

 500 GeV (→ 1TeV)

 Luminosity: 2 x 1034 cm-2 s-1

 technology is at hand

 Compact Linear Collider CLIC

 normalconducting acceleration

 100 MeV/m, 12 GHz

 two-beam acceleration principle

 up to several TeV

 still in fundamental R&D phase
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Timeline

 Physics will decide the way forward!

 LHC will tell us which energy reach will be needed

 Years around 2012 will be the decision years on how to 

proceed:

 ILC, CLIC, LHC-Upgrades, something completely different?
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ILC Timeline

LHC Results
CLIC 

Feasibility 

Study
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ILC Reference Design Report (2007)

Download it at

www.linearcollider.org
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2011: CLIC Conceptual Design Report
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Physics Case
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Physics Case

 There are other lectures which deal with the physics of 

electron-positron collisions

 Elementary particle physics research - A. Geiser

 Introduction to elementary particle physics - J. Meyer (HEP-

Lectures)

 Physics at e+e- colliders - G. Moortgat-Pick (HEP-Lectures)

 I will just give one example and will leave the rest to the 

specialised lectures
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Higgs Physics
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Establishing the Higgs-Mechanism

 Measuring the couplings of the Higgs to massive particles

 Check coupling-mass relation

 The smoking gun!
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ILC Accelerator Design
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The Future is Linear

€LC~ E
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The Luminosity Issue

The Luminosity (cm-2 s-1) for a collider with Gaussian 

beams is given by: 

2

4

b rep

D

x y

n N f
L H

  


nb = bunches / train

N = particles per bunch

frep = repetition frequency

4πσx σy = beam cross-section at IP

HD = beam-beam enhancement factor
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The Luminosity Issue: RF Power

 

4
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Introducing the Beam Power:

yields
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RF Power

4

RF RF

D

x y cm

P N
L H

E



  


Some numbers:

Ecm = 500 GeV

N = 1010

nb = 100

frep = 100 Hz

Pbeams = 8 MW

Adding efficiencies Wall plug  RF  beam

yields AC power needs > 100 MW just to accelerate beams 

and maintain luminosity!
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  
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Storage Ring vs Linear Collider

 LEP frep 44 kHz

 ILC frep few-100 Hz (power limited)

 Factor ~ 400 in L already lost!

 Recover by pushing hard on the beam spot sizes at 

collision:

LEP:     130 x 6 μm2

ILC: 500 x 5 nm2

Needed to achieve L~ O(1034 cm-2 s-1)!
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b rep
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x y

n N f
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  
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x

y
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Beamstrahlung
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 Strong mutual focusing of beams 

gives rise to significant luminosity 

enhancement (Hd≈2): Pinch effect

 e± pass through intense field of 

opposite beam, radiate hard 

photons: Beamstrahlung

Choose flat beams!
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Luminosity Scaling Law
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 Choose flat beam (σy << σx):

 Luminosity law: 

 yields:
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How to Maximise Luminosity

 high RF beam-power conversion efficiency RF

 high RF power PRF

 small vertical beam size σy

 large bunch length σz

 could go to higher beamstrahlung BS, if willing to live with 

consequences

3 / 2
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ILC Baseline Design

30



31K. Buesser Electron-Positron Linear Collider

ILC Bunch Structure

 Superconducting RF has small dissipation losses in cavity 

walls  long pulses with large bunch spacing possible
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ILC Technical Systems

32
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Sources

 Requirements:

 Produce long bunch trains of high charge bunches

 ~3000 bunches per train

 5 trains per second

 With small emittances

 And polarisarion:

 mandatory for electrons

 nice to have for positrons
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Electron Source

120 kV

electrons

laser p
hotons

G aAs

cathode

  =  840 nm

20  m m

 Laser driven photo injector based 

on SLC design

 Circular polarised photons on GaAs 

cathode  longitudinal polarised 

electrons

 very high vacuum requirements (< 

10-11 mbar) to protect cathode from 

impurities and ion backdrift

 140-160 keV electron kinetic 

energy at exit

 1ns bunch length at 3 MHz

 Peak current: 4.5-5 nC/ns (needed 

at IP 1.6-3.2 nC), space charge 

limited
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Positron Source

 Production of e± pairs by ~30 MeV undulator photons 

hitting a thin (0.4 X0) target

 Thin target reduces multiple scattering, hence better 

emittance

 Needs >150 GeV electrons in undulator!
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Positron Source Design

 Using a helical undulator allows the production of polarised 

positrons!

 Positron source links electron and positron linac

 Keep-alive positron source planned
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Damping Rings

37
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Damping Rings

 RF system in damping rings accelerates beam particles in 

longitudinal direction

 Interplay between radiation and RF reduces transverse 

emittance!

 Typical damping times are of order 100 ms

 Linac RD pulse length is 1ms!

 Whole bunch train (300 km @ 300ns) needs to be stored in a 

damping ring O(10km)!

 Bunch train needs to be compressed in damping ring

38
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ILC Damping Ring Design

• Damping time by SR from bending magnets 

would be too large O(400ms)

• Include damping wigglers in the beam to 

reduce damping time to ~25 ms
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Main Linac

40
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ILC’s Workhorse - SCRF

B. Foster - DESY - 06/10 41Global Design Effort

Parameter Value

C.M.  Energy 500 GeV

Peak luminosity 2x1034 cm -2s-1

Beam Rep. rate 5 Hz

Pulse time duration 1 ms

Average beam 

current 

9 mA (in 

pulse)

Av. field 

gradient

31.5 

MV/m

# 9-cell cavity 14,560

# cryomodule 1,680

# RF units 560
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How does a Klystron work?

 DC Beam at high voltage (<500 kV, < 500 A) is emitted from the gun

 A low-power signal at the design frequency excites the input cavity

 Particles are accelerated or decelerated in the input cavity, depending 

on phase/arrival time

 Velocity modulation becomes time modulation in the long drift tube 

(beam is bunched at drive frequency)

 Bunched beam excites output cavity at design frequency (beam 

loading) 

 Spent beam is stopped in the collector.
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ILC Klystrons

 10 MW multibeam klystron 
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ILC Cavities

 Acceleration gradient goal:

 35 MV/m in 9-cell cavities

with production yield >80%

 50 MV/m have been reached 

with single cavities

 Mass production reliability is the 

key problem

44

2010 ILC 

target

2nd pass
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Tunnel Configuration

 Two tunnel solution:

 Three RF/cable penetrations every rf unit

 Safety crossovers every 500 m

 34 kV power distribution

 72.5 km tunnels

 13 major shafts > 9 meter diameter

 443 K cu. m. underground excavation: caverns, alcoves, halls

 Or is one tunnel better (XFEL-like)?
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From RDR -> SB2009

B. Foster - DESY - 06/10 46Global Design Effort

RDR SB2009 • Single Tunnel for main 

linac

• Move positron source to 

end of linac

• Reduce number of 

bunches factor of two 

(lower power)

• Reduce size of damping 

rings (3.2km)

• Integrate central region

• Single stage bunch 

compressor
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Beam Delivery System
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Beam Delivery System Tasks

 The main tasks of the Beam Delivery System are:

 Collimation: remove the beam halo to reduce background

 Beam diagnostics (up- and downstream of the IP)

 Final Focus System: squeeze the beams to nanometre sizes to 

provide luminosity at the IP

 Beam dumps: dispose spent beams after the collision

48
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Final Focus

 

f1 f2 f2 

IP  

final  

doublet 

(FD ) 

f1

f2 (=L*)

Use telescope optics to de-magnify beam by factor m = f1/f2= f1/L
*

Need typically  m = 300

putting L* = 2m  f1 = 600m

In real life much more complicated: correction for large chromatic and 

geometric aberrations needed  principle design challenge 
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IP Region

51
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Detectors and Push/Pull

 Integrated luminosity at 

linear colliders scales not 

with the number of 

interaction regions

 ILC has just one interaction 

beam line (cost issue) but 

should have two detectors

 Try to find a solution where 

two detectors share one 

interaction region

Push/Pull System
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Sample Sites

 Three deep sites 
under study:
 Americas: Fermilab

 Asia: Japan

 Europe: CERN

 Two shallow sites:
 DESY

 Dubna

 Sample sites are 
studied for technical 
reasons. 

 Real site choice will 
be a political decision!
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CLIC Technology
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What if we need to go way beyond 1 TeV?

 LHC will tell us the region of the interesting physics ahead

 All seems to hint to the <1TeV region

 But what if the interesting area is the multi-TeV region?

 A Linear Collider with multi-TeV energy reach will be needed then!

 The CLIC technology opens the path to the multi-TeV regime.
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The Luminosity Challenge

 Remember:

 Challenge: Luminosity of 1034 cm-2s-1 at 3-5 TeV!

 Need high RF power PRF

 Need high RF efficiency ηRF

 Need very small bunch sizes at the IP

 Challenge: Energy of 3-5 TeV on reasonable length (50km)

 Acceleration gradients ~100 MV/m

 Impossible with superconducting cavities (limit around 40-50 MV/m)

 Normalconducting copper cavities needed

 lower RF efficiencies, more RF power needed!

56
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Two-beam Acceleration

 Use low-energy high-current electron drive-beam as 

klystron replacement:

57

Two Beam Scheme:

Drive Beam supplies RF power

• 12 GHz bunch structure

• low energy (2.4 GeV - 240 MeV)

• high current (100A)

Main beam for physics

• high energy (9 GeV – 1.5 TeV)

• current 1.2 A
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Copper Acceleration Cavities
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Beam Spot Sizes
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ILC/CLIC parameters

60http://www.cern.ch/lcd   Lucie Linssen, 13/11/2009

2.4

2.25(2 x)
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CLIC Test Facility CTF3

 Show CLIC feasibility by 2010

61



62K. Buesser Electron-Positron Linear Collider

ILC Detectors
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Generic Detector
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Basic detector design concept
(and compared to LEP detector)

• Performance goal (common to all det. concepts)

– Vertex Detector:

(ILC 5x better than LEP)

– Tracking:

(ILC: 10x better) (CMS: 1.5 10-4) 

– Jet energy res.:

(ILC: 2x better)

 Detector optimized for Particle Flow Algorithm (PFA)

EEE

pp

pIP

tt

/3.0/

105/

sin/105)(
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The Particle Flow Concept

 Idea: use the sub-detector with the 
best resolution for the energy 
measurement!

 Charged particles: tracking system 
(~65% of jet energy)

 Photons: ECAL (~25%)

 Neutral Hadrons: HCAL (~10%)

 Avoid double counting!

 Trace every single particle 
through the detector

 Ejet = Echarged + Ephotons + Eneutral hadr.

 σ2(Ejet)= σ2(Echarged) + σ2(Ephotons )+ 
σ2(Eneutral hadr.)+σ2

confusion
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Detector Solenoid

 High magnetic field 

needed for precision in 

momentum 

measurement:

 3.5 - 4 T

 Field homogeneity is 

crucial for TPC operation

 Coil is a major cost driver 

for the experiments!

 CMS coil (4T) is the 

model
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CLIC detector concepts will be based on SiD and ILD.

Modified to meet CLIC requirements

Validated ILC concepts
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Imaging Detector

 e+e- → ZH
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Conclusion

69
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Conclusion

 The LHC will need to be 

complemented by an 

electron-positron collider 

for precision 

measurements

 LHC results will tell the 

parameter needs

 ILC is the far most 

advanced collider design

 CLIC could be a high-

energy option

 on a much longer timescale 

though...

 Machine and experiments 

demand high-tech solutions 

on yet untested scales
70
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Backup detector slides
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Vertex Detector

 Requirements:

 excellent point resolution <4μm

 small pixel sizes: 20 x 20 μm2

 ~109 channels

 low material budget: ~0.1% X0

 fast read-out to minimise pile-up

 immune against EMI effects

 Flavour tagging is crucial

 b-tagging easier than c-tagging

 Many technologies under 

study
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Tracking Options: Pixelated or Gaseuos?
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Tracking System Option: Time Projection Chamber

74

 Genuine 3d trajectory measurement

 Spacepoint resolution ~100μm

 Minimal amount of material in front of calorimeters 

 Rather slow: 150 bunch crossings per picture
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Tracking System Option: Silicon Tracker

 Axial strips, no z information

 rφ resolution: < 7μm

 pt resolution: Δpt/pt
2 < 2 x 10-5 GeV-1
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ILD Detector Concept

76


