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OUTLINE

= Part 1 — Motivation: Why the LHC?

= Part 2 — Realisation: How the LHC?
= The accelerator.
= The experiments ALICE, LHCb, TOTEM and LHC{.
= ATLAS and CMS.

= Intermezzo: Basics of pp physics

= Part 3 — Results: What at the LHC?

= Commissioning and performance
= The rediscovery of the Standard Model.
= Higgs boson searches.

= Searches for Supersymmetry and other BSM physics.



INTERMEZZ0O
Basics of pp physics



OVERVIEW OF pp REACTIONS (1)

pp reactions: To be understood:
.. from a simple (but potentially - The complex protons.
coloured!) initial state: - proton structure

- HERA physics and deep inelastic

< @ scattering

- The reaction between (constituents

Oy

.. to a very complicated final state on of ) the protons. | |
“hadron level” and in the detector: ~ (hard) QCD, using perturbation
theory and Feynman rules

- models for things that cannot be
treated using pQCD.

- The transformation to signals in the
detector.
- detector simulations, detector
understanding




HERA: STRUCTURE FUNCTIONS

Low x: With increasing Q2, more and more radiated Increasing Q% - low x populates, high x depopulates!
gluons and quark pairs from g-> qq are seen!
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High x: With increasing Q?, less and less un-radiated
partons are left here!



HERA: STRUCTURE FUNCTIONS

Connection between structure function F, and PDFs
—> extraction of PDFs from F, data!

— Remember definition of F,:

F2 = Fz(xan) = EQ?XQi(xan)

— Consider “"DGLAP” evolution of structure function
with Q2:
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- Sufficient information to extract PDFs from
behaviour of F, with x and Q?!
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x AND Q2 AT HERA AND THE LHC

HERA

y: Inelasticity

Q?: Momentum transfer
[Resolution A~1/Q]

X: momentum fraction

W = Q% (GeV))
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LHC covers different (and much wider) range
in X and Q2 as compared to HERA:

— Options for determining the PDFs in an
extended region? Probably very difficult!

— Necessity to use HERA PDFs for LHC
predictions. DGALP formalism:

1. Determine F,(x,Q,%) at low start scale Q,°.
2. Evolve F, to higher Q2 using DGLAP

equation:
aFZ(xan)
dIn O’

X _an)quZ + aS})qgg

BUT:
— Is DGLAP reliable?

— Are other effects relevant?

— Do new dynamics (low x) play a role for the
PDFs at LHC?

= Need effort to control/test/improve PDFs
at the LHC! Specific processes needed for
that! (like W, t or Z production).



OVERVIEW OF pp REACTIONS (2)

pp reactions:
... the global picture:

f?" vt :is: 4:: “ / 35'.'
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Proton 0 0
Parton

(quark, gluon) s’i‘)'
\ ,

2835%2835 bunches
in the LHC ring.

10° protons / bunch

<30 pp collisions
per bunch crossing

N parton-parton
collisions / pp collision

Complex final-states

in every parton-parton
collision.

Description/understanding of the different stages:

The rate of proton-proton interactions is connected to the
(proton-proton) cross-section o ,, via the luminosity:

N=app-L

Luminosity L is machine parameter; related to the bunch-

crossing frequency f, the number of particles per bunch,
and the cross-sections of the bunches:

N, N,
4r-0,. 0,

L-f

The proton-proton cross-section o, is connected to the
parton-parton cross-section o ; (for partons i,j) via the
parton distribution functions f,,, (probability to find parton
of type i in proton p):

Gpp X Efi/p ®6ﬁ ®fj/p
i

The parton-parton cross-sections o ; can (in principle) be
calculated using perturbative methods.

~

O. =

(n) 1
i Cij A

n

Need to disentangle multi-proton (overlay) and multi-
parton collisions experimentally.



PRINCIPLE OF FACTORISATION, o;;

Remember the formula for the pp cross-section:

Gpp X Efi/p ®6lj ®fj/p
Ij

— The “hard scattering matrix element” o ; (or
parton-parton cross-section) can be calculated
perturbatively starting from (simple) Feynman
diagrams. It contains processes at large

(energy/momentum/mass) scales / small distances.

— The PDFs f, must be determined experimentally
from data (HERA!). They resum soft / long-range
contributions to the cross-section.

“Factorisation”; It is possible to disentangle effects
that play at very different scales!

— We have already discussed the PDFs f.
— Now discuss the hard scattering matrix element o ;.

Most important insight:
This is the process-dependent part! Examples:

: q q
Top production ;
g b

SUSY particle
production

Drell-Yan fermion
pair production




THE HARD SCATTERING CROSS-SECTION o;

For all processes: if you want to calculate a cross
section then

— use (universal) PDFs f; ..

— calculate, using Feynman rules, the hard cross-
sections.

-- put things together (“convlolute”), assuming
factorisation to be valid.

g t
W+t production S
b Missing in this picture:
b W — Initial and final state radiation.

— Hadronisation and decay.
— Higher orders.
— Parton showers.

Higgs production

U —»—p----- D — Loads of subtleties ...
ye'
leptoquark | © 0
eptoquark | :
production | 9 WD £
g 2000 _____ )



THE LHC CROSS-SECTIONS

Many interesting (specific, easy-to-identify) processes
are very complicated even at lowest order:

— SUSY cascade decays:
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There are tools that calculate the LO cross-section
given any PDF and any given o ;. And a few full-size
event generators (HERWIG, PYTHIA, ...)

Putting all ingredients together and calculating:
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Note that cross-sections for known SM processes is
huge — and small for Higgs, SUSY = necessity for

trigger, later!



LUMINOSITY DETERMINATION (AT LHC)

Remember:

l

N,

_ (1) .
=0, L

— For each process |

we measure the rate (or number) of events.
— But we are truly interested in the pp cross-section
0 ,p (for process i) > we need luminosity L.

Simplest approach:

— Define ‘test’ process with very precisely calculable
cross-section. Then use above equation to get L.

— LEP: Small-angle Bhabha ee—>ee scattering.

= Experimentally challenging (acceptance!). Typical

uncertainties 1%.

0
1

200 4(I)0 mm
1 1

— HERA: Bremsstrahlungs process ep—>ep 7.

For pp collisions:

— Precise lumi determination (5%) important, for

example, for Higgs mass determination.

— No clear ‘candle’ to normalise to; various ideas

on the market.
1. method: Optical theorem:

dN,,
dt

t=0

— (Nel+

]vinel)2 (1+p2]

16
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2. Photon-photon production of lepton pairs

(leptons measured cleanlv in experiments!).

pp—=p+yy+p
— p+ITl+p

3. W and Z production 2
(clean signatures via :
leptonic decay modes).  *°f

to about 4%.
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CROSS-SECTIONS, PARTON LUMINOSITIES (1)

At hadron colliders, not the full CMS energy is
ready for collision — only a fraction 7 :

Factorization

S =X,X,8 =TS

-  Might be useful to specify how many
collisions are available at which s-hat

- parton luminosities!

Now study parton luminosity for various processes
and CMS energies. For example gg:

dL

T
dt

.
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- Much higher parton lumis at LHC than at
Tevatron. High s-hat reached!



CROSS-SECTIONS, PARTON LUMINOSITIES (2)

.. with the “partonic cross-section” (at LHC):
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— factor 40 forgg> H @ My= 120 GeV
— factor 10000 for gg—> XX @ My= 0.5 TeV



TWO-JET PRODUCTION (1)

The most intuitive process in pp collisions: two jet
production: pp—> jet+jet.

Can proceed from the following diagrams in LO:

[ A\

... with the following matrix elements and their
values at 90 deg CMS scattering angle:
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TWO-JET PRODUCTION (2)

One can measure and calculate the two-jet cross- Note the composition of the sample as a function
section (for a given pseudorapidity): of the jeF transverse energy (relative to the
beam axis):
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MINIMUM BIAS, PILE-UP, UNDERLYING EVENTS, AND
MULTI-PARTON INTERACTIONS

Most of the pp reactions:

— "minimum bias” (MB) events: In most cases the
protons will more or less “fly through” and undergo
only very peripheral or soft interactions: elastic or
single/double diffractive.

... in these cases no high-p; exchange takes place —
no particles are scattered under large angles, all
reaction products go more or less in the proton flight
direction (“diffractive” and “elastic” events).

o, , =0, .+

total elastic

Y matp ey Y dontiie—air fraey

Gnon—dif f ractev

Only the hard, non-diffractive events can be
calculated in perturbative QCD:

— Soft events do not have a hard scale > « ¢ is too
large for perturbative calculations!

Nevertheless MB events important — there are so
many, and they may help to understand the detector!

More complications:

— Pile-up: More than one pp interaction in one bunch
crossing (disentangle using vertex information?)

— Multi-parton interactions: More than one pair of
partons may scatter!

— Underlying event: Everything except the hardest
scattering (later):




THEORETICAL PREDICTIONS

We distinguish:

— Leading-order MC programs with parton-shower
formalism.

— Fixed-order calculations without parton
showers (typically at NLO for QCD, NNLO for weak
processes ...)

— "MC@NLO"-type programs that combine the best of

all worlds — namely higher orders and details of the
final state via parton-shower algorithms!

Distinguish the “hard scattering matrix element” and

the “parton shower” (and note the difficulty in
combining them!):

—

Hard matrix element:

— correct treatment of large-angle, hard phenomena.

— correct normalisation of cross sections via inclusion
of real and virtual corrections.

— Corrections lead to events with negative weights >
inherent problems for combination with parton
showers?

Parton showers:

— Summation of all (?) soft and collinear effects in the
final state > correct description of soft behaviour.

— Summation of “leading logarithms”.
— Radiation in initial and final state and their
interference can change kinematics of an event
- cancellation of real and virtual divergencies not
guaranteed anymore!
- combination with NLO difficult!!!!

Only lately:

— Concepts for combination of next-to-leading order
calculations and parton showers (key words
MC@NLO, CKKW, ...).

— Far too deep to be discussed here today ;-) ..



SIMULATION

Calculation of differential

cross sections (according
to known distributions)

Result: 4 vectors!

Parton showers:
radiation of g,g.
matrix elements
or LLA algos.
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SIMULATION




