Physics at the LHC

Motivation, Machine, Experiments, Physics

DESY Summer Student Programme Hamburg, August 2010

OUTLINE

- Part 1 Motivation: Why the LHC?
- Part 2 Realisation: How the LHC?
 - The accelerator.
 - The experiments ALICE, LHCb, TOTEM and LHCf.
 - ATLAS and CMS.
- Intermezzo: Basics of pp physics
- Part 3 Results: What at the LHC?
 - Commissioning and performance
 - The rediscovery of the Standard Model.
 - Higgs boson searches.
 - Searches for Supersymmetry and other BSM physics.

Please note: Ask your question immediately and interrupt me in case of doubt. I will try to limit myself in speed and leave enough time for discussion.

PART 1 Motivation: Why the LHC?

WHY THE LHC? – N GOOD REASONS!

- The Standard Model (SM) is in excellent agreement with basically all measurements – so why worry at all?
- ... because we have not yet found the Higgs boson!
 - Without a Higgs, the SM diverges at 1 TeV!
- > ... because the SM is not really beautiful or simple!
 - It contains too many free parameters! Explanation in fundamental theory?
- > ... because the SM does not provide gauge-coupling (mass) unification!
 - The three SM couplings do not unify at highest energies!
- > ... because the SM does not provide a dark-matter candidate!
 - Dark matter is required according galaxy rotation curves etc.!
- > ... because there are more fundamental questions!
 - Gravity? Gauge structure? Why 3 generations? Connection between leptons and quarks? Hierarchy / fine-tuning problem? Baryon asymmetry? ...

THE STANDARD MODEL

The SM is an extremely successful theory!

- Gauge structure SU(3)_C×SU(2)_L×U(1)_Y.
- Three generations of quarks and fermions.
- Massive gauge bosons via Higgs mechanism.

- > Up to now basically all HEP results in good agreement with SM predictions!
 - As expressed in SM fits e.g. from GFITTER.
 - No deviations beyond 2.5σ.

THE HIGGS BOSON

- > Without a Higgs boson
 - bosons (and fermions) don't acquire mass.
 - the SM diverges at high energies.
- > What do we know about the Higgs?
 - Theory: ~100 < M_H < 1000 GeV</p>
 - EW precision data! SM observables sensitive to M_H → extract parameter!

2%

SM, FREE PARAMETERS, UNIFICATION

- > First, the SM contains too many free parameters
 - Like masses, couplings, mixing angles …
 - Would like to have them explained!
- > Then, the couplings and masses don't unify
 - as one would expect from SM!
- > Finally, how come that SM masses are stable?
 - Higgs mass receives quantum corrections like

- Since all masses in SM depend on M_H, they all should suffer from UV cut-off (Planck scale?)
- Simply decreasing cut-off is artificial difficult to accommodate in decent theory.
- Potential cure: supersymmetry (later)!

DARK MATTER

- > Visible matter is not all there is!
- > How do we know (since 1930s!)?
 - Galaxy rotation curves (next slide)
 - WMAP CMB measurements
 - Structure formation in the universe
 - Gravitational lensing effects
- > No particle candidate in the SM!

DARK MATTER

Simple mechanics tells us: speed as a measure for eclosed mass!

$$\frac{mv^2}{r} = G\frac{Mm}{r^2} \implies v \propto \sqrt{M/r}$$

Mass beyond luminous disk of galaxy!!

POSSIBLE SOLUTIONS?

A POSSIBLE SOLUTION ...

Supersymmetry or SUSY!

- Invented in 1974 by Wess and Zumino: an extension of the SM; reduces to SM at low energies.
- Connects SM particles to SUSY partners and fermions with bosons:

 $\begin{array}{l} Q | f ermio \eta = | boson \rangle \\ Q | boson \rangle = | f ermio \eta \end{array}$

Spin is changed by one half unit:

Spin	SM particles	SUSY partners	Spin
1/2	Leptonen (e, v _e ,) Quarks (u, d,)	Sleptonen (ë, v _e ,) Squarks (ü, ä,)	0
1	Gluonen W± Z ⁰ Photon (γ)	Gluinos Wino Zino Photino (ỹ)	1/2
0	Higgs	Higgsino	1/2
2	Graviton	Gravitino	3/2

- SUSY has a solution for many problems and even connects to strings and thus allows inclusion of gravity at highest scales.
 - But ... model with many parameters (>100) for phenomenological purposes need to introduce assumptions → "MSSM" with five parameters.

A POSSIBLE SOLUTION ..

> SUSY ...

- Provides a dark-matter candidate via the lightest supersymmetric particle (LSP) in many cases a neutralino – that escapes detection in our experiments.
- Allows unification of gauge couplings (and masses).
 SUSY particles introduce additional corrections with opposite sign:
 - → Cancellation of divergencies, no need for finetuning.

$$\Delta M_H^2 = -\frac{\left|\lambda_f\right|^2}{8\pi^2} \Lambda_{UV}^2 \dots \quad \Delta M_H^2 = \frac{\lambda_S}{16\pi^2} \left[\Lambda_{UV}^2 + \dots\right]$$

- SUSY would also help in view of structure formation, connection to gravity etc.
- ➔ Many 'SUSY addicts'! But other possibilities: large extra dimensions, Little Higgs models, Technicolor, strings, alternative Higgs, compositeness, leptoquarks ...

WHY A LARGE HADRON COLLIDER?

- $E = mc^2$
 - We know that new particles are heavy
 → need high energy to produce them!
 - Because of uncertainty principle, smaller substructures require higher momentum (resolution λ~1/p)
- Discoveries with hadron machines!
 - Then precision physics at lepton colliders.
 - By the way: bosons discovered in Europe!
- Large radius: synchrotron radiation!
 - Energy lost per orbit:

$$W = \oint P_S dt = P_S \frac{2\pi R}{c} = \frac{e^2}{3\varepsilon_0} \cdot \frac{1}{\left(m_0 c^2\right)^4} \cdot \frac{E^4}{R}$$

→ Large Hadron Collider!

