Lecture : Introduction to Elementary Particle Physics DESY Summer Student Program Joachim Meyer DESY

TEST : Did I learn the essentials ?

With Answers !

- 1. Leptons of 2 GeV total energy scatter on protons at rest. How big is the invariant mass of the lepton-proton system in case the lepton is a a) neutrino, b) electron, c) τ - lepton answer : $M^2 = (P_l + P_p)^2 = M_l^2 + M_p^2 + 2E_lM_p$. For ν und e the term M_l^2 can be neglected.
- What was the crucial experiment to demonstrate that one has to differentiate between ν_e and ν_µ ?
 answer: First neutrino experiment at accelerators (Brookhaven, 1962) : Scatter neutrinos from muonic pion decays (π → µν) on matter. Only the processes νN → µX were observed , not the processes νN → eX.
- 3. What conservation laws are violated in weak interactions compared to electromagnetic interactions ? answer: Parity, C- parity and CP-invariance. In charged current weak interactions (CC) also the flavors (strangeness, charm, bottom, top).
- 4. How does the π⁺ decay ? Why does it decay so rarely into π⁺ → e⁺ν_e? *answer :with 99.99% in* π⁺ → μ⁺ν. Due to angular momentum conservation the charged lepton has to be produced with the wrong helicity. This is suppressed by the factor (1 − β_l).
- 5. How do the charged lepton spectra differ in the decays of π^+ and μ^+ ? answer: $\pi^+ \to \mu^+ \nu$ is a two body decay : sharp energy. $\mu^+ \to e^+ \nu_e \overline{\nu_{\mu}}$ is a three body decay with a continuum β -decay spectrum
- Which data show that quarks come in 3 degrees of freedom (color) ? answer: The decay rates (leptonically/hadronically) of τ und W demand a factor 3
- 7. How does the W decay ? Quantitative relation between the leptonic and hadronic decay channels. Antwort: W decays in $e\nu_e, \mu\nu_\mu, \tau\nu_\tau$, ud und cs. It thus follows that the

relation $e : \mu : \tau$: hadrons is 1: 1: 1: 6 (Lepton universality and color).

- What does lepton universality mean ? Examples. answer:Couplings to the leptons of the three generations are equal. E.g. the three leptonic W decays or the two leptonic τ decays are of equal strength.
- How do we know that there are just 3 generations of fundamental fermions ?
 answer: The width of the Z depends on the kinematically possible decay channels. Assuming that m_{ν4} < m_Z/2 a decay Z → ν₄ν₄ would give a further contribution to the width. Experimental measurements of the total Z widths do not allow such a contribution.
- 10. What limits the maximal reachable energy of proton accelerators and that of electron accelerators? answer: For a given radius the energy E_p is limited by the achievable strength of the magnetic dipole fields, whereas E_e is limited by the energy losses due to synchrotron radiation.
- 11. What distance (in vacuum) does a π^+ , π^- , π^0 of 140 GeV reach on average before decaying ? answer: $x = \gamma c \tau$, $\gamma = E/m = 1000$. $x_{\pi^{\pm}} = 7.8 Km$, $x_{\pi^0} = 25 \mu m$
- 12. How can one experimentally distinguish between γ, e⁺, π⁺, μ⁺, τ⁺? answer : γ: em shower, no track . e⁺ : em shower with track.
 π⁺ : hadronic shower with track, μ⁺ : no shower, penetrating track.
 τ⁺ : very short track, decay, secondary vertex
- 13. What was the experimental evidence for 'strange quarks' ? answer: V-particles, produced in pairs by strong interaction, but weakly decaying (long lifetime). The neutral strange particles (Λ, K_0) decay in pairs of charged particles.
- 14. What was the experimental evidence for 'charmed quarks' ? answer: Discovery of the $J/\Psi = c\overline{c}$. Massive strongly decaying new particle with very long lifetime, since decay into charmed mesons kinematically impossible.
- 15. What was the experimental evidence for 'top quarks' ? answer: Produced in proton-antiproton collisions at 1.8 TeV. Top decays to W and b-quark. Signature of this very rare processes : Leptonic W-decay and secondary vertices from b-decays.

- 16. What was the experimental evidence for τ ?
 answer : Observation of e⁺e⁻ → e⁺μ⁻ events with unbalanced kinematics. Explained by e⁺e⁻ → τ⁺τ⁻ with e and μ decays of the τ
- 17. How does the τ^- decay ? answer : $\tau^- \to e^- \overline{\nu_e} \nu_{\tau}, \ \tau^- \to \mu^- \overline{\nu_{\mu}} \nu_{\tau}, \ \tau^- \to hadrons \ \nu_{\tau}$
- 18. What is the quark composition of the Δ^{++} ? How does it decay ? Via which interaction ? What life time ? answer : $\Delta^{++} = uuu \rightarrow p\pi^+$, Strong interaction, $\tau = 10^{-25}sec$
- 19. What is the quark composition of the lightest strange Baryon ? How does it decay ? Via which interaction ? What life time ? answer: $\Lambda = uds \rightarrow N\pi$. Weak interaction , $\tau = 2.6 * 10^{-10} sec$
- 20. What type of neutrino is dominantly produced in a) the sun, b) at a reactor, c) at accelerators ? answer: Sun $pp \rightarrow de^+\nu_e$. Reactor Beta decay $n \rightarrow pe^-\overline{\nu_e}$. Accelerators $\pi \rightarrow \mu \nu_{\mu}$
- 21. How can one produce a pure ν_{μ} beam with only minimal Anti- ν_{μ} admixture ? answer : Sign selection of the pions. π^+ produce ν_{μ} , π^- produce $\overline{\nu_{\mu}}$
- 22. How did one discover the existence of weak neutral currents ? answer: $\nu_{\mu}e^{-} \rightarrow \nu_{\mu}e^{-}$ und $\nu_{\mu}N \rightarrow \nu_{\mu}X$.
- Give some examples for parity violation in weak interactions.
 answer : Neutrinos only lefthanded, antineutrinos only righthanded.
 Wu-Experiment (Decay of polarised Co⁶⁰, angular asymmetry of decay electrons), pion decay, muon decay.
- 24. Under which conditions are neutral particles their own antiparticles ? Give examples and counter examples. answer : In case all 'charge like' quantum numbers are zero. (γ, π^0) . Not Neutron, K^0 .
- 25. The J/Ψ particle ('HEP-November revolution 1974') was found at a mass of 3.1 GeV at the SPEAR e^+e^- storage ring. At slightly higher masses one discovered the Ψ' and Ψ'' particles. Why is the width of the Ψ'' so much larger (factor 100) than that of the Ψ' ? answer: The Ψ'' can decay into charmed mesons $\Psi'' \to D^+D^-$ (dominating strong decay). For J/Ψ und Ψ' this mode is kinematically forbidden.

- 26. How is it possible to separate in lepton-proton scattering experiments the scattering on quarks from the scattering on antiquarks ? answer : Via Charged Current Neutrino scattering. Quarks interact lefthanded and antiquarks righthanded.
- 27. How is it possible to separate in lepton-proton scattering experiments the scattering on u-quarks from the scattering on d-quarks ? answer : Via Charged Current Neutrino scattering : $\nu_{\mu}d \rightarrow \mu^{-}u, \ \overline{\nu_{\mu}}u \rightarrow \mu^{+}d$
- 28. Which data prove that the quarks have charges 1/3 and 2/3? answer: Compare Elektron-Proton scattering with CC-Neutrino-Protonscattering. Photons couple to charge quadratic (4/9, 1/9). W couple universell (1) to u and d quarks.
- 29. Draw all (relevant) Feynman diagrams for the following leptonic reactions
 e⁺e⁻ → e⁺e⁻ answer : spacelike and timelike diagram
 e⁺e⁻ → τ⁺τ⁻ answer : only timelike (annihilation) diagram
 ν_μe⁻ → ν_μe⁻ answer: Only NC diagram (Z-exchange)
 ν_ee⁻ → ν_ee⁻ answer : NC (Z-exchange) und CC (W-exchange) diagram
- 30. Why does the electron have a mass of 0.5109989 MeV? answer: In case you know the answer, please tell me.