Physics at HERA

Summer Student Lectures 16 August 2010

Katja Krüger Kirchhoff-Institut für Physik H1 Collaboration email: katja.krueger@desy.de

Overview Part 2

- High Q² and Electroweak Physics
- Polarization
- Exotics
- Jet Physics
- Heavy Quarks
- Diffraction

personal selection! many more analyses are done!

High Q² & Electroweak Physics

More Structure Functions

High Q² Neutral Current

• difference between e^+p and e^-p only at large $Q^2 \approx M_Z^2$

→ $\gamma - Z^0$ interference

High Q² Neutral Current

Electroweak Parameters: Z⁰ Couplings

high Q² NC DIS allows the determination of the vector and axial-vector couplings of up- and down-type quarks to the Z⁰

Charged Current Interactions

Charged Current Cross Section

$$\frac{d^2 \sigma_{CC}^{\pm}}{dx \, dQ^2} = \frac{G_F^2}{4 \pi x} \left(\frac{M_W^2}{M_W^2 + Q^2} \right)^2 Y_+ \left[W_2^{\pm} - \frac{y^2}{Y_+} W_L^{\pm} \mp \frac{Y_-}{Y_+} x \, W_3^{\pm} \right]$$

- *W* bosons couple differently to *up* and *down*-type quarks
- in the QPM:

 $W_{2}^{-} = x (U + \overline{D}), \quad x W_{3}^{-} = x (U - \overline{D})$ $W_{2}^{+} = x (\overline{U} + D), \quad x W_{3}^{+} = x (D - \overline{U})$ $W_{L}^{\pm} = 0$

$$\stackrel{\bullet}{\rightarrow} \sigma_{CC}^{-} \propto x \left[U + (1-y)^{2} \overline{D} \right]$$

$$\sigma_{CC}^{+} \propto x \left[\overline{U} + (1-y)^{2} D \right]$$

Comparison NC vs. CC

- at low Q²: different dependences because of photon in NC
- at high Q² ≈ M_z²: ,,electroweak unification": electromagnetic and weak interactions have similar strength

Polarization

Polarization @ HERA

- transverse polarization builds up in ~40 minutes through synchrotron radiation (Sokolov-Ternov effect)
- spin rotators flip transverse longitudinal before experiments and back after

Polarization @ HERA

NR24

CC & Polarization

• CC cross section depends on longitudinal electron/positron polarization P_e

$$\frac{d^2 \sigma_{CC}^{\pm}}{dx \, dQ^2} (P_e) \approx (1 \pm P_e) \frac{G_F^2}{4 \pi x} \cdot \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2 \cdot Y_+ W_2^{\pm}$$

• reason: *W* boson couples only to left-handed (LH) particles and right-handed (RH) antiparticles:

CC: Polarization Dependence

- Standard Modell expectation:
 - $\sigma_{CC}^{-}(P_e = +1) = 0$ $\sigma_{CC}^{+}(P_e = -1) = 0$
- experimental result: (H1)

 $\sigma_{CC}^{-}(+1) = -0.9 \pm 2.9_{stat}$ $\pm 1.9_{syst} \pm 1.9_{pol} \text{ pb}$ $\sigma_{CC}^{+}(-1) = -3.9 \pm 2.3_{stat}$ $\pm 0.7_{syst} \pm 0.8_{pol} \text{ pb}$

Exotics or Beyond the Standard Modell

New Particles

many theories predict more particles than the SM:

- SUSY
- leptoquarks
 - particle with lepton and quark properties
 - can be produced resonantly in *ep* collisions
- ... exited fermions, contact interactions, large extradimensions ...

but experimentally search also model-independent!

Leptoquarks

- can look the same as NC or CC process
- $M_{IQ}^2 = (xP + k)^2 = xs$
- compare measured cross section with SM expectation
- derive limits on coupling λ

Contact Interactions

- New interactions at higher scale ($\Lambda \gg \sqrt{s}$) can be effectively described at lower energies as 4-fermion *eeqq* Contact Interactions
- Reminder: before W and Z⁰ were discovered, weak interactions ($\Lambda \approx M_W$) were described as 4-fermion Contact Interactions with Fermi constant $G_F = g^2/M_W^2$
- Contact Interactions would modify the DIS cross section

Contact Interactions

ZEUS

- No sign for Contact Interactions found
- masses much larger than \sqrt{s} excluded

ZEUS (94-07 data):

 $\Lambda > 3.8 - 8.9 \text{ TeV}$

Quark Radius

- if quarks have a size, a quark Form Factor would modify the NC cross section at high Q^2
- limit on quark size: $< 0.6 \cdot 10^{-18}$ m

Isolated Leptons and Missing $\ensuremath{P_{T}}$

- spectacular events
- excess in HERA1 data at large transverse momenta of the hadronic system (P_T^X) seen by H1

Isolated Leptons and Missing $\ensuremath{P_{T}}$

Jet Physics & the Strong Coupling α_s

What are Jets?

- jets are narrow bundles of hadrons originating from quarks or gluons
- can be used to study QCD and the strong coupling

How Are Jets Produced?

- do analysis in a frame where photon and proton collide headon (e.g. Breit frame)
- → LO DIS cannot produce transverse momentum
- → jets with transverse momentum can originate from bosongluon fusion (BGF) or QCD-Compton (QCDC) processes

Jet Cross Sections

- theory curve:
 - NLO QCD calculation

- PDFs

- $-\alpha_s$
- hadronisation
- very good agreement of theory and data, PDFs extracted from F₂ describe jet prod.
- uncertainty on PDF and theory input leads to uncertainty on α_s

$\alpha_{\rm S}$ from Jets

- running of $\alpha_{\rm S}$ visible in one experiment
- theory uncertainties larger than experimental uncertainties

 $\alpha_{\rm s}({\rm M}_{\rm Z})$

HERA measurements often dominated by systematic and theoretical uncertainties

→ HERA value very competitive

Improved Parton Densities

- F_2 is only indirectly sensitive to the gluon
- → global fits (MRST, CTEQ) use Tevatron jet data
- → alternative: use HERA (di-)jet data

Heavy Quarks

Production of Heavy Quarks

predominantly via boson gluon fusion

large quark mass allows pQCD calculations

directly sensitive to gluon density in the proton

Katja Krüger

charm Signals

Tagging of beauty Quarks

- large transverse momenta due to large mass
- semileptonic decay
- long lifetime (*beauty* ~500 μ m, *charm* ~100-300 μ m)

charm contribution to F₂

- good experimental precision by combining measurements with different methods
- *charm* data in agreement with predictions with PDF from F₂

Contribution to the Cross Section

- large charm fraction (up to ~30%)
- small beauty fraction (‰ to few %)
- charm and beauty thresholds
- reasonable description by theory

Diffraction

What is Diffraction?

- in general: in DIS events the proton breaks up
- in diffraction: the proton stays intact (but nevertheless W>M_P)

surprise: ~10% of all events at HERA are diffractive!

Diffraction

- idea: interaction between photon and proton by a ,,Pomeron"
 - colourless
 - already used to describe low energy hadronhadron scattering
 - no particle!

X

Physics in Diffraction

- many things similar to inclusive DIS
 - diffractive parton densities
 - jets in diffraction
 - heavy flavour in diffraction
- test of factorization
 - are the parton densities the same for all diffractive processes?
 - or: does the Pomeron know what happens at the photon vertex?

Diffractive Parton Densities

Physics @ HERA

Diffractive Dijet Cross Sections

- shape of the QCD theory prediction agrees with the data
- normalization is wrong
- → factorization broken?!

Summary

- HERA offered unique possibilities to study the structure of the proton
- perturbative QCD is a big success to describe HERA data
- no significant deviation from the Standard Model found
- always prepare for the unexpected!