Physics at HERA

Summer Student Lectures
16 August 2010

Katja Krüger
Kirchhoff-Institut für Physik
H1 Collaboration
email: katja.krueger@desy.de
Overview

- Introduction to HERA
- Inclusive DIS & Structure Functions
 - formalism
 - HERA results
- High Q^2 & Electroweak Physics
- QCD: Jet Physics, Heavy Flavour Production
- Beyond the Standard Model
- (Diffraction)
Collider Types

e^+e^-
- clean initial and final state
- small background
- limited energy
- LEP (200 GeV)
- ILC (1 TeV)

$p^\pm p^\pm$
- high energy
- complicated final state
- large background
- Tevatron (2 TeV)
- LHC (14 TeV)

ep
- unique initial state
- electron as probe of proton structure
- two accelerators
- HERA (300 GeV)
HERA

H1

ZEUS

p 920 GeV e 27.6 GeV
Collected Luminosity

- lumi upgrade in 2001
 - higher luminosity
 - e polarization for H1 & ZEUS
 - detector upgrades
- in total $\sim 500 \text{ pb}^{-1}$ of high energy data collected per experiment
- last months devoted to low p energy (460, 575 GeV)
ZEUS Detector

- tracking detector
- magnet coil
- calorimeter
- muon system
H1 Detector

- tracking detector
- calorimeter
- magnet coil
- muon system
Schematic View of the H1 Detector
Physics Topics at HERA

expected

- proton structure
 - structure functions
 - parton densities
- photon structure
- perturbative QCD
 - jets
 - α_s
 - heavy quarks
- electroweak

not (so) expected

- exotics (beyond the standard model)
 - SUSY
 - leptoquarks
 - ...
- diffraction
ep Scattering & Structure Functions
An ep scattering event
The HERA Textbook Plots

H1 and ZEUS

\[\sigma_{NC}(x,Q^2) x^2 \]

\(x = 0.06, i=21 \)
\(x = 0.00008, i=20 \)
\(x = 0.00013, i=19 \)
\(x = 0.00020, i=18 \)
\(x = 0.00032, i=17 \)
\(x = 0.0005, i=16 \)
\(x = 0.0008, i=15 \)
\(x = 0.0013, i=14 \)
\(x = 0.0020, i=13 \)
\(x = 0.0032, i=12 \)
\(x = 0.005, i=11 \)
\(x = 0.008, i=10 \)
\(x = 0.013, i=9 \)
\(x = 0.02, i=8 \)
\(x = 0.032, i=7 \)
\(x = 0.05, i=6 \)
\(x = 0.08, i=5 \)
\(x = 0.13, i=4 \)
\(x = 0.18, i=3 \)
\(x = 0.25, i=2 \)
\(x = 0.4, i=1 \)
\(x = 0.65, i=0 \)

Q^2 = 10 GeV^2

\[x_f \]

\[x_g (\times 0.05) \]

\[x_S (\times 0.05) \]

\[x_d \]

Katja Krüger

Physics @ HERA
Rutherford Scattering

- first scattering experiment
 → existence of the nucleus

\[\frac{d\sigma}{d\Omega} = \left(\frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{4 E_{\text{kin}}} \right)^2 \frac{1}{\sin^4 \frac{\theta}{2}} \]

assumes
- Coulomb potential
- no spins
- no recoil
Elastic Electron Scattering

variables:
- \(q = k - k' \)
- \(Q^2 = -q^2 = 4 \frac{E}{E'} \sin^2(\Theta/2) \)
- \(E' = \frac{E}{1 + (2E/M)\sin^2(\Theta/2)} \)

\(\Rightarrow \) only one independent!

\[
\frac{d\sigma}{dQ^2} = \frac{4\pi \alpha^2 z^2}{Q^4} \left(\frac{E'}{E} \right)^2 \cos^2 \frac{\Theta}{2}
\]

Coulomb-Potential \(\sim 1/r \)

recoil

particles stays intact

mass \(M \), charge \(z \), spin 0

Katja Krüger

Physics @ HERA
Elastic Electron Scattering: Cross Section

- Mott Scattering: electron on a pointlike charged particle with spin 0
 \[\left(\frac{d \sigma}{d Q^2} \right)_{\text{Mott}} = \frac{4 \pi \alpha^2}{Q^4} \left(\frac{E'}{E} \right)^2 \cos^2 \frac{\Theta}{2} \]

- Dirac Scattering: electron on a pointlike charged particle with spin \(\frac{1}{2} \)
 \[\left(\frac{d \sigma}{d Q^2} \right)_{\text{Dirac}} = \left(\frac{d \sigma}{d Q^2} \right)_{\text{Mott}} \left[1 + 2 \tau \tan^2 \frac{\Theta}{2} \right] \quad \text{with} \quad \tau = \frac{Q^2}{4 M^2} \]

- electron on proton: „form factors“ needed:
 \[\left(\frac{d \sigma}{d Q^2} \right)_{ep} = \left(\frac{d \sigma}{d Q^2} \right)_{\text{Mott}} \left[\frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} + 2 \tau G_M^2(Q^2) \tan^2 \frac{\Theta}{2} \right] \]
 \[\rightarrow \text{protons are not pointlike!} \]
Electric Form Factor of the Proton

- describes the charge distribution in the proton (Fourier transform)
- measured:
 - $G_E(0) = 1$
 - $G_M(0) = 2.79$
 - $G_E(Q^2), G_M(Q^2) \propto \left(1 + \frac{Q^2}{0.71 \text{ GeV}^2}\right)^{-2}$
 - elastic scattering only import at low Q^2

from J.J. Murphy et al., "Proton form factor from 0.15 to 0.79 fm2"
Inelastic Electron Scattering

variables:

- $q = k - k'$
- $Q^2 = -q^2$
- $s = (P + k)^2$
- $W^2 = (P + q)^2$
 $= M^2 + 2q \cdot P - Q^2$
- $y = q \cdot P / k \cdot P$

\rightarrow two independent!

elastic: $W = M$

inelastic: $W > M$
Inelastic Electron Proton Scattering

- inelastic scattering: \(W > M_p \)
- ratio to Mott cross section nearly flat in \(Q^2 \)
Deep Inelastic Scattering (DIS)

- deep: $Q^2 > (M_p)^2$
- inelastic: $W > M_p$
- for HERA: $m_e, M_p \ll W$
 \[s = 4 E_p E_e \]
 \[Q^2 = 2 E_e E'_e (1 + \cos \theta_e) \]
 \[y = 1 - \frac{E'_e}{E_e} \sin^2 \frac{\theta_e}{2} \]
 \[W^2 = y s - Q^2 \]
- one more variable: $x = Q^2 / (2 P \cdot q) = Q^2 / ys$

$k' = (E'_e, 0, E'_e \sin \theta_e, E'_e \cos \theta_e)$

$k = (E_e, 0, 0, -E_e)$

$P = (E_p, 0, 0, E_p)$

attention $\theta_e = \pi - \Theta$
DIS: What is x?

x can be interpreted as the momentum fraction of the struck parton of the proton:

\[
(q + xP)^2 = -Q^2 + 2x q \cdot P + (xP)^2 \\
(q + xP)^2 = (xP)^2 = (m_q)^2
\]

\[
x = \frac{Q^2}{2q \cdot P} = \frac{Q^2}{ys}
\]

inelastic proton scattering is scattering on a parton of the proton!
Structure Functions F_1 & F_2

- the DIS cross section can be written as

\[
\frac{d^2 \sigma}{dx \, dQ^2} = \frac{4 \pi \alpha^2}{Q^4} \frac{1}{x} \left[(1-y) \, F_2(x, Q^2) + \frac{y^2}{2} \, 2 \, x \, F_1(x, Q^2) \right] \\
= \frac{4 \pi \alpha^2}{Q^4} \frac{1}{x} \frac{E'}{E} \left[F_2(x, Q^2) \cos^2 \frac{\Theta}{2} + \frac{Q^2}{2 \, x^2 \, M_p^2} \, 2 \, x \, F_1(x, Q^2) \sin^2 \frac{\Theta}{2} \right]
\]

- comparison with Dirac formula

\[
\left(\frac{d \sigma}{d \, Q^2} \right)_{\text{Dirac}} = \frac{4 \pi \alpha^2}{Q^4} \left(\frac{E'}{E} \right)^2 \left[\cos^2 \frac{\Theta}{2} + \frac{Q^2}{2 \, M^2} \sin^2 \frac{\Theta}{2} \right]
\]

$\rightarrow F_2$ corresponds to electric field of the parton
$\rightarrow F_1$ corresponds to spin of the parton
Parton Spin

- parton spin $\frac{1}{2}$: \[2 \times F_1 = F_2 \] (Callan Gross)
- parton spin 0: \[2 \times F_1 = 0 \]

from P. Schmüser, „Feynman-Graphen und Eichtheorien für Experimentalphysiker“
Scaling: F_2 independent of Q^2

SLAC 1972

independent of Q^2, we always see the same partons (=quarks)
(Naive) Quark Parton Model

- proton consists of 3 partons, identified with the QCD quarks
- during the interaction proton is „frozen“
- electron proton scattering is sum of incoherent electron quark scatterings
- proton structure is defined by parton distributions

\[F_2(x, Q^2) = x \sum e^2_q q(x) \]
The HERA Textbook Plots

H1 and ZEUS

\[\sigma_{\text{NC}}(xQ^2\times x^2) \]

- HERA I NC e+p
- Fixed Target
- HERAPDF1.0

quarks ✓
How does $F_2(x)$ look like?
How do we expect $F_2(x)$ to look like?
How does $F_2(x)$ look like?

what happens at low x?

from Povh et al., „Teilchen und Kerne“
Scaling Violations

at smaller & larger x, the amount of quarks depends on Q^2.
Parton Evolution

- number of partons changes with Q^2
- Q^2 can be interpreted as resolving power: $Q^2 \propto (\hbar/\lambda)^2$

small Q^2:
- many partons with large x
- (nearly) no partons at low x

large Q^2:
- less partons with large x
- more partons at low x
Scaling Violations

large x: quarks radiate gluons, so the studied x decreases
$\rightarrow F_2$ decreases with increasing Q^2

small x: gluons split into seaquarks, so more quarks become visible
$\rightarrow F_2$ increases with increasing Q^2
DGLAP Evolution Equations

\[
\frac{\partial}{\partial \log Q^2} \begin{bmatrix} q(x, Q^2) \\ g(x, Q^2) \end{bmatrix} = \frac{\alpha_s}{2\pi} \begin{bmatrix} \mathcal{P}_{q/q} \begin{bmatrix} \gamma \end{bmatrix} & \mathcal{P}_{q/g} \begin{bmatrix} \gamma \end{bmatrix} \\ \mathcal{P}_{g/q} \begin{bmatrix} \gamma \end{bmatrix} & \mathcal{P}_{g/g} \begin{bmatrix} \gamma \end{bmatrix} \end{bmatrix} \otimes \begin{bmatrix} q(x, Q^2) \\ g(x, Q^2) \end{bmatrix}
\]

- \(Q^2 \) dependence of quark densities \(q(x, Q^2) \) and gluon density \(g(x, Q^2) \) is predicted
- no prediction for the \(x \) dependence \(\rightarrow \) initial condition needed
HERA Kinematic Range

- HERA Standard DIS
- HERA ZEUS BPT
- HERA Shifted Vertex
- Fixed Target Experiments

Before HERA

New

before HERA
F₂ vs. Q²

- HERA data cover huge range:
 - 5 orders in Q² and
 - 4 orders in x

- approximate scaling at large x

- clear scaling violations at small x
F_2 vs. Q^2: example bins

- clear scaling violations at small x
- approximate scaling at large x
How does $F_2(x)$ look like at low x?
strong rise towards low x, steepness rising with Q^2
DGLAP Evolution Equations

\[\frac{\partial}{\partial \log Q^2} \begin{bmatrix} q(x, Q^2) \\ g(x, Q^2) \end{bmatrix} = \frac{\alpha_s}{2\pi} \begin{bmatrix} P_{q/g} & P_{g/q} \\ P_{g/q} & P_{q/g} \end{bmatrix} \otimes \begin{bmatrix} q(x, Q^2) \\ g(x, Q^2) \end{bmatrix} \]

- Q^2 dependence of quark densities $q(x, Q^2)$ and gluon density $g(x, Q^2)$ is predicted
Parton Density Fits

DGLAP predicts only Q^2 dependence

→ assume parametrisation of the parton density functions (PDFs) as a function of x at a starting scale Q_0^2 (typically around 2 - 7 GeV2):

$$x \ q(x, Q_0^2) = A \ x^B (1 - x)^C \left[1 + D \ x + E \ x^2 + F \ x^3 \right]$$

→ evolve the PDFs to all measured Q^2, calculate F_2, and fit the parameters to match the data

⚠ some freedom in the procedure!

- how many parameters, which Q_0^2?
- how to combine quark and antiquark densities?
Parton Density Fits

quark and antiquark densities:

- most general: $u, \bar{u}, d, \bar{d}, s, \bar{s}, c, \bar{c}, (b, \bar{b})$
- distinguish valence and sea quarks (ZEUS): $u_{v}, d_{v}, \text{Sea}, \bar{d} - \bar{u}$
- distinguish u-type and d-type quarks (H1):

 $$U = u + c, \quad D = d + s (+ b)$$
 $$\bar{U} = \bar{u} + \bar{c}, \quad \bar{D} = \bar{d} + \bar{s} (+ \bar{b})$$
 $$\rightarrow u_{v} = U - \bar{U}, \quad d_{v} = D - \bar{D}$$
Combined H1 & ZEUS Parton Density

combination of data from H1 and ZEUS gives big improvements!
Longitudinal Structure Function F_L

- Callan-Gross relation $2 \times F_1 = F_2$ only true in naive Quark-Parton-Model
- the longitudinal structure function F_L is defined as $F_L = F_2 - 2 \times F_1$
- F_L is directly proportional to the gluon density
- for a measurement of F_L one needs data at the same x and Q^2, but different y

\[
\frac{d^2 \sigma}{dx \, dQ^2} = \frac{4 \pi \alpha^2}{Q^4} \frac{1}{x} (1 - y + \frac{y^2}{2}) \left[F_2(x, Q^2) - \frac{y^2/2}{1 - y + y^2/2} F_L(x, Q^2) \right]
\]

- only possible with different s because $Q^2 = xys$
 - measure at different beam energies!
Longitudinal Structure Function F_L

$$Q^2 = 25 \text{ GeV}^2$$

$$\sigma_r = \frac{x Q^4}{2 \pi \alpha^2} \frac{1}{Y_+} \frac{d^2 \sigma}{dx \, dQ^2}$$

$$= F_2(x, Q^2) - \frac{y^2}{Y_+} F_L(x, Q^2)$$

with $Y_+ = 1 + (1 - y)^2$

- linear expression in y^2/Y_+
- use linear fits in y^2/Y_+ and determine F_L from slope
Longitudinal Structure Function F_L

- **ZEUS**: simultaneous determination of F_2 and F_L
- consistent with PDF fit to F_2
- most precise information on gluon still from scaling violations
„The“ HERA Textbook Plots

H1 and ZEUS

$\sigma_{NC}(Q^2 \times x)$

Q^2 / GeV^2

1×10^{-6}

1×10^{-3}

1×10^{-1}

1×10^{1}

1×10^{3}

1×10^{5}

1×10^{7}

\times 0.0005, $i = 16$

\times 0.001, $i = 14$

\times 0.0015, $i = 13$

\times 0.002, $i = 12$

\times 0.0025, $i = 11$

\times 0.003, $i = 10$

\times 0.0035, $i = 9$

\times 0.004, $i = 8$

\times 0.0045, $i = 7$

\times 0.005, $i = 6$

\times 0.006, $i = 5$

\times 0.007, $i = 4$

\times 0.008, $i = 3$

\times 0.009, $i = 2$

\times 0.01, $i = 1$

\times 0.011, $i = 0$

H1 and ZEUS

$Q^2 = 10 \text{ GeV}^2$

$\times u_x$

$\times d_x$

$\times (0.05)$

exp. uncert.

model uncert.

parametrization uncert.

Katja Krüger

Physics @ HERA