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What you will see…
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How to build colliders

E

B B

Circular colliders:

Linear colliders:

E E
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Superconducting  magnets

superconducting magnets

LHC

HERA
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How electromagnetic fields accelerate particles
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Differences between proton and electron accelerators

HERA (Hadron Electron Ring Accelerator) tunnel:

proton
accelerator

electron accelerator
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Fundamental principles at work
2mcE =mass–energy equivalence

(de Broglie wavelength)wave–particle duality
p
h

=λ

( )BvEqF
rrrr

×+=
Lorenzt force

Ampère’s law

superconductivity Poynting vector

Q
quantum effects

relativity
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Accelerators as tools for researchers

2mcE =
E E creation of much heavier particles

> 1. Mass–energy equivalence:
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 Electrons   27.6 GeV 

 Protons   920 GeV 

HERA: the super electron microscope

]GeV/c[
2.1]fm[

p
=λ 1.6 fm = diameter of protonResolution  = de Broglie wavelength

HERA: Hadron-Electron Ring Accelerator, 6.3 km ring, DESY
(physics: 1992-2007), max. E = 27.5 GeV for electrons, 920 GeV for protrons

collision energy at center of mass frame = 318 GeV fm0038.0
GeV/c318

2.1]fm[ ==λ
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Accelerators as light sources

electrons

N

S

dipole magnet synchrotron light

spectroscopy, X-ray diffraction, X-ray microscopy, crystallography (of proteins), …



Pedro Castro |  Introduction to Accelerators  |  July 2010  |  Page 11

Other applications of accelerators?

> About 120 accelerators for research in “nuclear and particle physics”

> About 70 electron storage rings and electron linear accelerators
used as light sources (so-called ‘synchrotron radiation sources’)
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Other applications of accelerators

> About 120 accelerators for research in “nuclear and particle physics”

> About 70 electron storage rings and electron linear accelerators
used as light sources (so-called ‘synchrotron radiation sources’)

> More than 7,000 accelerators for medicine

> More than 18,000 industrial accelerators
ion implantation (>9,000) ,  electron cutting and welding (>4,000) …

radiotherapy (>7,500), radioisotope production (200)

Other applications:

< 1%
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How to build colliders

E

B B

Circular colliders:

Linear colliders:

E E
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Motion in electric and magnetic fields

Equation of motion under Lorentz Force

( )BvEqF
dt
pd rrrrr

×+==

charge velocity

of the particle

magnetic field

electric fieldmomentum
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Magnetic fields do not change the particles energy, only electric fields do !

Motion in magnetic fields

if the electric field is zero (E=0), then

vFBvq
dt
pdF rrrr
rr

⊥→×⋅==

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .
electron

r

v

B (perpendicular)
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Acceleration with an electrostatic field

maximum voltage ~ 5-10 MV

principle:

in Van der Graaff generators

Eq
dt
pdF

rrr
⋅==

beam
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Acceleration with an electrostatic field

V=0 V=0
V=0V=0

beam

Tandem Van der Graff accelerator
tandem = “two things placed one behind the other”

V=10 MV
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Acceleration with an electrostatic field

12 MV-Tandem van de Graaff Accelerator
at MPI Heidelberg, GE

V=0 V=0

beam

V=0V=0

V=10 MV
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Acceleration with an electrostatic field

12 MV-Tandem van de Graaff Accelerator
at MPI Heidelberg, GE

20 MV-Tandem
at Daresbury, UK
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Acceleration using Radio-Frequency (RF) generators

Wideroe (1928):  apply acceleration voltage several times to particle beam

- + - + - +
charged particle

p

RF-generator

p

RF-generator

-+ - + - +half a period later:

-
+

E

E

+
-
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Acceleration using Radio-Frequency (RF) generators

- + - + - +
charged particle

p

RF-generator
-
+

E

p

RF-generator

quarter of a period later:
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Acceleration using Radio-Frequency (RF) generators

p

RF-generator

p

RF-generator

-+ - + - +E

quarter of a period later:

+
-

half a period later:
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Acceleration using Radio-Frequency (RF) generators

Drift-tube principle

p

RF-generator

jargon:
synchronous condition
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Restrictions of RF

> particles travel in groups called bunches

> bunches are travelling synchronous with RF cycles synchronous 
condition

> vE Δ→Δ
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Velocity as function of energy β as function of γ

2
2
1 mvEkin =Newton:

Einstein:

2

2
2

1 β
γ

−
==+=

mcmcEEE kino

relativisticc
v

=β

relativistic γ = 3 :
2.8 GeV protron
1.5 MeV electron
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Accelerator beams are ultra relativistic

injection E=40 GeV

maximum E=920 GeV

injection E=7 GeV

maximum E=27.5 GeV

maximum E=7 TeV

HERA:   6.3 km
LEP/LHC: 26.7 km

β>0.999

maximum E=105 GeV

record: γ=205000
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Acceleration using Radio-Frequency (RF) generators

β = 1   (ultra relativistic particles)

p

RF-generator

2/RFλ
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Acceleration using Radio-Frequency (RF) generators

β < 1

original Wideroe drift-tube principle
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Drift tube accelerators

> only low freq. (<10 MHz) can be used

drift tubes are impracticable for ultra-relativistic particles (β=1)

only for very low β particles

Limitations of drift tube accelerators:

f
cLtube 22

βλβ == 30 m for β=1 and f=10 MHz
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Resonant cavities

Alvarez drift-tube structure:
RF resonator

E E
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988totalE MeV=

310 /p MeV c=

2 2 2 2 4
0E c p m c= +

2
0k in to ta lE E m c= −

50kinE MeV=

Examples

DESY proton linac 
(LINAC III)

GSI Unilac
(GSI: Heavy Ion Research Center)

Darmstadt, Germany

Protons/Ions
E ≈ 20 MeV per nucleon 
β ≈ 0.04 … 0.6 

β ≈ 0.3
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Charges, currents and electromagnetic fields

E

+

+

-

-

+

+

-

-

+

+

-

-

+

+

-

-

I
. . .
. . .

. . .

. . .
. . .
. . .

. . .

. . .

B

B

a quarter of a period later:a quarter of a period later:

Alvarez drift-tube
LC circuit analogy:

p

. . .

. . .

L

C

+ -
L

I p
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Charges, currents and electromagnetic fields

+

+

+

+

+

+

+

+

-

-

-

-
-

-

-

-

E

I

. . .

. . .
. . .
. . .

. . .

. . .
. . .
. . .B

B

3 quarters of a period later:
3 quarters of a period later:

Alvarez drift-tube

p

p

half a period later:

half a period later:
L

C

+-
L

I
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Resonant cavities

Alvarez drift-tube structure:

RFβλ

t

V

length of the tube

RF resonator

higher frequencies possible shorter accelerator

still preferred solution
for ions and protons
up to few hundred MeV

twice longer tubes
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Examples
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E
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B

a quarter of a period later:
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RF cavity basics: the pill box cavity

B

E
+
+
+
+

+
+
+
+

-
-
-
-

-
-
-
-

. . .

. . .
.
.

. . .

. . .
.
.

I

B

a quarter
of a period
later:

p
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Pill box cavity: 3D visualisation of E and B

E B

beam
beam
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In reality…

Superconducting cavity used in FLASH (0.3 km) and in XFEL (3 km)

beam

1 m

pill box called ‘cell’

RF input port
called ‘input coupler’

or ‘power coupler’

beam

Higher Order Modes port
(unwanted modes)

RF input port
called ‘input coupler’
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Superconducting cavity used in FLASH and in XFEL

beam

Higher Order Modes port
(unwanted modes)

Simulation of the fundamental mode: electric field lines

beam

onaccelerati mode-π

E
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Artistic view?
“Electromagnetic fields accelerate the electrons in a superconducting resonator “
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Advantages of RF superconductivity

resistance

critical temperature (Tc):

for DC currents !

at radio-frequencies, there is a “microwave surface resistance”

which typically is 5 orders of magnitude lower than R of copper
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Advantages of RF superconductivity

Example:  comparison of 500 MHz cavities:

superconducting
cavity

normal conducting
cavity

for E = 1 MV/m 1.5   W / m 56   kW / m
at 2 K

for E = 1 MV/m 1   kW / m 56   kW / m

dissipated at
the cavity walls

for E = 1 MV/m 1   kW / m 112   kW / m including RF generation
efficiency (50%)

>100  power reduction factor

Carnot efficiency: 007.0
300

=
−

=
T

T
cη x cryogenics

efficiency
20-30%
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Cavities inside of a cryostat

beam
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How to build colliders

E

B B

Circular colliders:

Linear colliders:

E E
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HERA: the super electron microscope

HERA (Hadron Electron Ring Accelerator) tunnel:

protons
(“samples”)
at 920 GeV

electrons at 27.5 GeV
Why do they look so different?
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Implications of ultra relativistic approximations

B

v

electron

F

electron

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

r

v

B (perpendicular)

BvqF
dt
pd rrrr

×⋅==

E
cqB

p
qB

mv
qB

r
qvB

r
vm ≅==⇒=

γ
γ 12

1≅β
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Dipole magnet

permeability of iron = 300…10000
larger than air
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Dipole magnet

beam

air gap

flux lines
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Dipole magnet cross section

Max. B max. current large conductor cables

Power dissipated: 2IRP ⋅=
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Dipole magnet cross section

water cooling channels
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Dipole magnet cross section
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Dipole magnet

beam

iron

current
loops
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Dipole magnet cross section

C magnet + C magnet = H magnet
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Dipole magnet cross section (another design)
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Dipole magnet cross section (another design)

beam
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Dipole magnet cross section (another design)

beam

water cooling tubes

current leads
Power dissipated: 2IRP ⋅=



Pedro Castro |  Introduction to Accelerators  |  July 2010  |  Page 58

Superconducting  dipole magnets

superconducting dipoles

LHC

HERA
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Superconducting  dipole magnets
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Superconductivity

12.5 kA
normal conducting cables

12.5 kA
superconducting cable
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LHC cables

1 cable houses 36 strands 1 strand = 0.825 mm diameter
houses 6300 filaments

1 filament = 6 µm

Copper is the insulation material
between two filaments

cables from Rutherford company

(around each filament: 0.5 µm Cu)

cross section



Pedro Castro |  Introduction to Accelerators  |  July 2010  |  Page 62

Dipole field from 2 coils

densitycurrentuniform=J

J
B

Ampere’s law:

2
2 02

0
JrBJrBrdsB μπμπ =→==⋅∫

r

θ

r

B
θμ sin

2
0 rJBx −=

θμ cos
2
0 rJBy =

IsdB 0μ=⋅∫
rr

current through
the circle
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Dipole field from 2 coils

densitycurrentuniform=J

J J
B Br
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Dipole field from 2 coils

J
J

densitycurrentuniform=J

. 0=J
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Dipole field from 2 coils

J
J2

0JrB μ
=

0=J

densitycurrentuniform=J

θμ sin
2
0 rJBx −=

θμ cos
2
0 rJBy =

1θ
1r

2θ
2r

)cos(cos 2211 θθ rrd −+=

2211 sinsin θθ rrh ==
0)sinsin(

2 2211
0 =+−= θθμ rrJBx

dJrrJBy 2
)coscos(

2
0

2211
0 μθθμ

=−=

.
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Dipole field from 2 coils

J
J

densitycurrentuniform=J

0)sinsin(
2 2211
0 =−= θθμ rrJBx

dJrrJBy 2
)coscos(

2
0

2211
0 μθθμ

=−=
constant vertical field

B.
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From the principle … to the reality…

Aluminium collar

.
B
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Simulation of the magnetic field

B



Pedro Castro |  Introduction to Accelerators  |  July 2010  |  Page 69

From the principle to the reality…

Aluminium collar

.
B
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LHC dipole coils in 3D

B
p beam

p beam

I
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LHC dipole magnet (cross-section)
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p

p

Superconducting  dipole magnets
LHC dipole magnet interconnection:
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Damping rings

E

B B

Circular colliders:

Linear colliders:

E E

Damping rings
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HERA: the super electron microscope

HERA (Hadron Electron Ring Accelerator) tunnel:

protons
(“samples”)
at 920 GeV

electrons at 27.5 GeV

Why are the energies so different?
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Particles moving in a magnetic field

B

v

electron

F
BvqF

dt
pd rrrr

×==

BCharged particles when accelerated,
emit radiation tangential to the trajectory:
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Synchrotron radiation

ALL charged particles when accelerated,
emit radiation tangential to the trajectory:

4
18

turn ]m[
10034.6GeV][ γ

r
E

−×
=Δ

Total energy loss after one full turn:

B

electron

2
0cm
E

=γ

r
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Synchrotron radiation

4
18

turn ]m[
10034.6GeV][ γ

r
E

−×
=Δ

Total energy loss after one full turn:

2
0cm
E

=γ

HERA electron ring:

(0.3%)MeV80
GeV5.27

m580

≅Δ
=
=

E
E
r

HERA proton ring:

%)(10eV10
GeV920
m580

9-≅Δ

=
=

E
E
r

need acceleration = 80 MV per turn
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Synchrotron radiation

4
18

turn ]m[
10034.6GeV][ γ

r
E

−×
=Δ

Total energy loss after one full turn:

2
0cm
E

=γ

HERA electron ring:

(0.3%)MeV80
GeV5.27

m580

≅Δ
=
=

E
E
r

HERA proton ring:

%)(10eV10
GeV920
m580

9-≅Δ

=
=

E
E
r

need acceleration = 80 MV per turn

the limit is the max. dipole field = 5.5 Tesla

p
qB

r
=

1
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Synchrotron radiation

4
18

turn ]m[
10034.6GeV][ γ

r
E

−×
=Δ

Total energy loss after one full turn:

2
0cm
E

=γ

HERA electron ring:

(0.3%)MeV80
GeV5.27

m580

≅Δ
=
=

E
E
r

(3%)eV3
GeV105
m2800

GE
E
r

≅Δ
=
=

need acceleration = 80 MV per turn need 3 GV per turn !!

x5
LEP collider:
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Synchrotron radiation

4
18

turn ]m[
10034.6GeV][ γ

r
E

−×
=Δ

Total energy loss after one full turn:

2
0cm
E

=γ

HERA electron ring:

(0.3%)MeV80
GeV5.27

m580

≅Δ
=
=

E
E
r

LEP collider:

(3%)eV3
GeV105
m2800

GE
E
r

≅Δ
=
=

need acceleration = 80 MV per turn need 3 GV per turn !!

x5

LEP = Last Electron-

Positro
n Collider ?
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Radiation of a Hertz dipole under relativistic conditions

Lorentz-contraction

cv 5.0= cv 9.0=

dipole radiation:

PETRA:   γ =14000

electron trajectory

electron
trajectory

electron
trajectory
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Synchrotron radiation
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Development of synchrotron light sources

FELs lecture on Friday, by M. Dohlus
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Damping rings

E E

Damping rings

E

B B
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Concept of beam emittance

plasma
beam
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Concept of beam emittance

beam

xy

z

prpr
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Concept of beam emittance

beam

x

´x
dz
dx

p
px ≅=r

phase space diagram

prpr xy

z
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Concept of beam emittance

beam

x

phase space diagram

area/π = emittance (units: mm.mrad)

prpr

222 xxxx ′−′=ε

xy

z

´x
dz
dx

p
px ≅=r

emittance definition:
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Concept of beam emittance

beam

x

transverse phase space diagram

transverse emittance (units: mm.mrad)

xx offunctionas´

yy offunctionas´

prpr xy

z

´x
dz
dx

p
px ≅=r

222 '' yyyyy −=ε

222 '' xxxxx −=ε
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Concept of beam emittance

beam

z

pΔ
longitudinal phase space diagram

longitudinal emittance (units: mm.eV/c)

pr

zp offunctionasΔ

zε

pr xy

z
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Concept of beam emittance

parallel beam diverging beamconverging beam

x

´x

x

´x

x

´x
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Concept of beam emittance

xy

z

pr

acceleration (only in z direction)

zppp rrr
Δ+=´

smallergets
p
px
r

linear accelerators:

ε

E

E
1

∝ε
normalized emittance:

constantN =⋅= γεε

geometrical emittance

definition:
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Damping rings

E E

Damping rings

E

B B
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Quatum excitation

Nominal E
Trajectory

Low E 
Trajectory 

> Quantum excitation
Radiation is emitted in discrete quanta

Number and energy distribution etc. of photons obey statistical laws

Increase emittance

dipole magnet
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Need of focusing

xgFxgB xy ⋅−=⇒⋅−=

quadrupole magnet:
four iron pole shoes of hyperbolic contour

focusing !

hyperbola
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Quadrupole magnets

xgFxgB xy ⋅−=⇒⋅−=

quadrupole magnet:
four iron pole shoes of hyperbolic contour

ygFygB yx ⋅=⇒⋅=

focusing !

defocusing
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Quadrupole magnets

QD + QF =  net focusing effect:

charged particle

defocusing
quadrupole

focusing
quadrupole

center of quad
1x 2x

21 xx <

defocusing
quadrupole

focusing
quadrupole

beam
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Quadrupole magnets

QD + QF =  net focusing effect:

charged particle

defocusing
quadrupole

focusing
quadrupole

center of quad
1x 2x

21 xx <
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Circular accelerator

cell

dipole
magnet

dipole
magnet

defocusing
quadrupole

focusing
quadrupole

focusing
quadrupole

beam
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Circular accelerator

cell

dipole
magnet

dipole
magnet

defocusing
quadrupole

focusing
quadrupole

focusing
quadrupole

beam

PETRA
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HERA collider and injector chain

HERA: 4 arcs + 4 straight sections

arc

PETRA: 8 arcs + 8 straight sections

straight section
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Damping rings for high luminosity

Linear colliders:

E E

Damping rings

e+ e-

production rate of a given event (for example, Z particle production):

L
dt
dNR z

z
Z ⋅Σ==

cross section of Z production

luminosity (independent of the event type)

number of events
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Damping rings for high luminosity

Linear colliders:

E E

Damping rings

e+ e-

e+

e-

yx

e

σσπ
N
⋅

= −−

4
densitye

yx

e
zZ

NeP
σσπ4

)1( −+ ⋅Σ= xσ
yσ
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Damping rings for high luminosity

Linear colliders:

E E

Damping rings

e+ e-

yx

eeb
zzZ

NNnLR
σσπ4

−+⋅Σ=⋅Σ=

luminosity
transverse bunch sizes (at the collision point)

number of colliding bunches per second number of positrons per bunch

number of electrons per bunch
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Certification of knowledge
in accelerator physics and technology:

magnet dipoles basics (normal conducting 
and superconducting) 

RF cavity basics (normal conducting and 
superconducting)

synchrotron radiation effects 
quadrupole focusing
concept of emittance
concept of luminosity

Hamburg, 21st July 2010
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pedro.castro@desy.de

Thank you for your attention


