Introduction to Accelerators.

Scientific Tools for High Energy Physics and Synchrotron Radiation Research

Pedro Castro Introduction to Particle Accelerators DESY, July 2010

What you will see...

How to build colliders

Circular colliders:

Superconducting magnets

How electromagnetic fields accelerate particles

Differences between proton and electron accelerators

HERA (Hadron Electron Ring Accelerator) tunnel:

electron accelerator -

Fundamental principles at work

mass–energy equivalence $E = mc^2$

relativity

Ampère's law $\nabla imes {f B} = \mu_0 {f J}_{f f}$

wave–particle duality $\lambda = \frac{h}{-}$ (de Broglie wavelength) Lorenzt force $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$

superconductivity

Poynting vector $\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B}$

quantum effects

Accelerators as tools for researchers

HERA: the super electron microscope

HERA: Hadron-Electron Ring Accelerator, 6.3 km ring, DESY (physics: 1992-2007), max. E = 27.5 GeV for electrons, 920 GeV for protrons collision energy at <u>center of mass</u> frame = 318 GeV λ [fm] = $\frac{1.2}{318 \text{ GeV/c}}$ = 0.0038 fm

Accelerators as light sources

spectroscopy, X-ray diffraction, X-ray microscopy, crystallography (of proteins), ...

Other applications of accelerators?

- > About 120 accelerators for research in "nuclear and particle physics"
- > About 70 electron storage rings and electron linear accelerators used as light sources (so-called 'synchrotron radiation sources')

Other applications of accelerators

- > About 120 accelerators for research in "nuclear and particle physics"
- > About 70 electron storage rings and electron linear accelerators used as light sources (so-called 'synchrotron radiation sources')

< 1%

Other applications:

> More than 7,000 accelerators for medicine

radiotherapy (>7,500), radioisotope production (200)

> More than 18,000 industrial accelerators

ion implantation (>9,000), electron cutting and welding (>4,000) ...

How to build colliders

Circular colliders:

Motion in electric and magnetic fields

Equation of motion under Lorentz Force

Motion in magnetic fields

if the electric field is zero (E=0), then

Magnetic fields do not change the particles energy, only electric fields do !

$$\vec{F} = \frac{d\vec{p}}{dt} = q \cdot \vec{E}$$

maximum voltage ~ 5-10 MV in Van der Graaff generators

Tandem Van der Graff accelerator

tandem = "two things placed one behind the other"

Wideroe (1928): apply acceleration voltage several times to particle beam

Drift-tube principle

jargon:

synchronous condition

Restrictions of RF

- > particles travel in groups \rightarrow called bunches
- > bunches are travelling synchronous with RF cycles → synchronous condition

$$\rightarrow \Delta E \rightarrow \Delta v$$

Velocity as function of energy $\rightarrow \beta$ as function of γ

β < 1

original Wideroe drift-tube principle

Drift tube accelerators

Limitations of drift tube accelerators:

> only low freq. (<10 MHz) can be used

$$L_{tube} = \beta \frac{\lambda}{2} = \beta \frac{c}{2f} \rightarrow 30 \text{ m for } \beta = 1 \text{ and } f = 10 \text{ MHz}$$

- \rightarrow drift tubes are impracticable for ultra-relativistic particles (β =1)
- \rightarrow only for very low β particles

Alvarez drift-tube structure:

RF resonator

Examples

DESY proton linac (LINAC III)

 $\beta \approx 0.3$

GSI Unilac (GSI: Heavy Ion Research Center) Darmstadt, Germany

 $\begin{array}{l} \mbox{Protons/lons} \\ \mbox{E} \approx 20 \ \mbox{MeV} \ \mbox{per nucleon} \\ \mbox{\beta} \approx 0.04 \ \dots \ 0.6 \end{array}$

Charges, currents and electromagnetic fields

Alvarez drift-tube

a quarter of a period later:

Charges, currents and electromagnetic fields

Alvarez drift-tube structure:

higher frequencies possible \rightarrow shorter accelerator

still preferred solution for ions and protons up to few hundred MeV

Examples

Alvarez drift-tube

RF cavity basics: the pill box cavity

Pill box cavity: 3D visualisation of E and B

In reality...

Superconducting cavity used in FLASH and in XFEL

Simulation of the fundamental mode: electric field lines

Artistic view?

"Electromagnetic fields accelerate the electrons in a superconducting resonator "

Advantages of RF superconductivity

at radio-frequencies, there is a "microwave surface resistance"

which typically is <u>5 orders of magnitude</u> lower than R of copper

Example: comparison of 500 MHz cavities:

	superconducting cavity	normal conducting cavity	
for E = 1 MV/m	1.5 W / m at 2 K	56 kW/m	dissipated at the cavity walls
Carnot effici	ency: $\eta_c = \frac{T}{300 - T}$	x = 0.007 x	 cryogenics 20-30% efficiency
for E = 1 MV/m	1 kW / m	56 kW / m	
for $E = 1 MV/m$	1 kW / m	112 kW/m	 including RF generation efficiency (50%)

>100 power reduction factor

Cavities inside of a cryostat

Pedro Castro | Introduction to Accelerators | July 2010 | Page 44

How to build colliders

Circular colliders:

Pedro Castro | Introduction to Accelerators | July 2010 | Page 45

HERA: the super electron microscope

HERA (Hadron Electron Ring Accelerator) tunnel:

Implications of ultra relativistic approximations

Dipole magnet

Dipole magnet

Max. B \rightarrow max. current \rightarrow large conductor cables

Power dissipated:
$$P = R \cdot I^2$$

Dipole magnet

C magnet + C magnet = H magnet

Dipole magnet cross section (another design)

Dipole magnet cross section (another design)

Dipole magnet cross section (another design)

Superconducting dipole magnets

Superconducting dipole magnets

IC DIPOLE : STANDARD CROSS-SECTION

CERN A

Superconductivity

LHC cables

J = uniform current density

J = uniform current density

J = uniform current density

$$B_x = \frac{\mu_0 J}{2} (r_1 \sin \theta_1 - r_2 \sin \theta_2) = 0$$

$$B_y = \frac{\mu_0 J}{2} (r_1 \cos \theta_1 - r_2 \cos \theta_2) = \frac{\mu_0 J}{2} d$$

From the principle ... to the reality...

Simulation of the magnetic field

From the principle to the reality...

LHC dipole coils in 3D

LHC dipole magnet (cross-section)

LHC DIPOLE : STANDARD CROSS-SECTION

Superconducting dipole magnets

LHC dipole magnet interconnection:

Damping rings

Circular colliders:

HERA: the super electron microscope

HERA (Hadron Electron Ring Accelerator) tunnel:

electrons at 27.5 GeV

Why are the energies so different?

Particles moving in a magnetic field

Charged particles when accelerated, emit radiation tangential to the trajectory:

Total energy loss after one full turn:

Total energy loss after one full turn:

$$\Delta E_{\text{turn}}[\text{GeV}] = \frac{6.034 \times 10^{-18}}{r[\text{m}]} \gamma^{4} \qquad \gamma = \frac{E}{m_{0}c^{2}}$$

HERA electron ring:

 $E = 27.5 \, \text{GeV}$

 $\Delta E \cong 80 \text{ MeV} (0.3\%)$

 $r = 580 \,\mathrm{m}$

HERA proton ring: r = 580 m E = 920 GeV $\Delta E \cong 10 \text{ eV} (10^{-9}\%)$

need acceleration = 80 MV per turn

Total energy loss after one full turn:

$$\Delta E_{\text{turn}}[\text{GeV}] = \frac{6.034 \times 10^{-18}}{r[\text{m}]} \gamma^{4} \qquad \gamma = \frac{E}{m_{0}c^{2}}$$

HERA electron ring:

 $E = 27.5 \, \text{GeV}$

 $\Delta E \cong 80 \text{ MeV} (0.3\%)$

r = 580 m

HERA proton ring: r = 580 m

E = 920 GeV

the limit is the max. dipole field = 5.5 Tesla

need acceleration = 80 MV per turn

Total energy loss after one full turn:

$$\Delta E_{\text{turn}}[\text{GeV}] = \frac{6.034 \times 10^{-18}}{r[\text{m}]} \gamma^{4} \qquad \gamma = \frac{E}{m_{0}c^{2}}$$

Total energy loss after one full turn:

Radiation of a Hertz dipole under relativistic conditions

Bending Magnet

Development of synchrotron light sources

Damping rings

beam

plasma

beam

beam

Damping rings

Quatum excitation

> Quantum excitation

- Radiation is emitted in discrete quanta
- Number and energy distribution etc. of photons obey statistical laws
- Increase emittance

Need of focusing

Quadrupole magnets

Quadrupole magnets

QD + QF = net focusing effect:

Quadrupole magnets

QD + QF = net focusing effect:

Circular accelerator

Circular accelerator

PETRA

HERA collider and injector chain

Damping rings for high luminosity

Damping rings for high luminosity

Damping rings for high luminosity

in accelerator physics and technology:

- > magnet dipoles basics (normal conducting and superconducting)
- > RF cavity basics (normal conducting and superconducting)
- > synchrotron radiation effects
- > quadrupole focusing
- > concept of emittance
- concept of luminosity

Hamburg, 21st July 2010

Thank you for your attention

pedro.castro@desy.de

