Detectors for Particle Physics

Lecture 2:
Drift detectors
Muon detectors
MWPC, CSC, RPC, TRT, TPC, Cherenkov
Outline

• Lecture 1:
 ▶ Collider detectors
 ▶ Charged particles in a magnetic field
 ▶ Silicon detectors

• Lecture 2:
 ▶ Drift tubes
 ▶ Muon systems
 ▶ MWPCs, CSCs, RPCs, TRTs, TPCs, Cherenkovs

• Lecture 3:
 ▶ Electromagnetic showers and calorimeters
 ▶ Photon detectors
 ▶ Hadronics showers and calorimeters
 ▶ Particle flow technique

• Discussion session:
 ▶ Your questions, please
Track ionises gas atoms
✦ electrons drift towards anode: v_D
✦ Amplify
✦ Measure drift time: $\Delta t = t_1 - t_0$
✦ Reconstruct radius: $\Delta s = v_D \Delta t$.
✦ v_D depends on gas, voltage, pressure, temperature, field: need calibration.
Drift velocity

- Drift velocity depends on electric field, pressure, gas, temperature, magnetic field.
- Want stable operation point: just above maximum.
- Trade-off:
 - Slower gas = higher resolution.
 - Faster gas better in a high-rate environment.
ATLAS drift tubes

tube wall: 0.4 mm Al
wire: 50 µm W-Re at +3300V
endplug

Gas: Ar (91%) CH4 (5%) N2 (4%) at 3 bar

Length up to 6 m
30 mm diameter

Drift velocity: 30 µm/ns

Distance from time:

Resolution [µm]: 80 µm

Resolution [µm]:

D. Pitzl, DESY
DESY summer students lectures 4.8.2009
CMS drift cells

Extra electrode for field shaping: more uniform drift.
Left/right ambiguity remains.

time synchronization:

\[t_{\text{meas}} = t_{\text{elecr}} + t_{\text{of}} + t_{\text{prop}} + t_{\text{drift}} \]

- time pedestal \((t_{\text{trig}})\)

time spectrum:

- **time box**
 - Entries: 318611
 - \(\chi^2/\text{ndf}\): 127.2/32
 - Constant: 2595 ± 14.1
 - Mean: 1905 ± 0.1
 - Sigma: 7.933 ± 0.095

drift velocity calibration:

\[v_{\text{drift}} = \frac{L}{2 \times \langle T_{\text{max}} \rangle} \]

resolution

\[\text{resolution} = v_{\text{drift}} \times \langle \sigma_{T_{\text{max}}} \rangle \]
Choice of Gas 1: ionization and drift

- Drifting electrons should not be trapped:
 - Use noble gas, e.g. Ar.

- Want large primary ionization yield:
 - Ar gives 25 ions/cm at normal T, p for a minimum ionizing particle.

- The primary electrons may ionize further atoms:
 - $\times 3$ or $\times 4$ increase.

- Xe and/or higher pressure are even better (and more expensive).
Signal amplification near the wire

For cylindrical geometry:

\[E(r) \propto \frac{1}{r} \quad \text{and} \quad V(r) \propto \ln \frac{r}{a} \]

- the primary electrons drift towards the positive anode
- due to \(1/r\) dependence the electric field close to very thin wires reaches values of \(E > \text{kV/cm}\)
- \(\Rightarrow\) in between collisions with atoms electrons gain enough energy to ionize further gas molecules
- \(\Rightarrow\) exponential increase in number of electron-ion pairs very close (few \(\mu\text{m}\)) to the wire

Amplification by \(10^5\) possible
The Avalanche

- Amplification depends on:
 - Anode voltage
 - Wire radius
 - Gas composition
 - Pressure
 - Temperature

Receding ion cloud induces signal on the wire
Choice of Gas 2: high gain, stable operation

- Want large gain at low voltage:
 - Ar is mono-atomic gas
 - No vibrational or rotational modes, only excitation and ionization.

- Excited Ar atoms may emit UV photons (11.6 eV):
 - UV photons may reach the cathode and produce photoelectrons.
 - Photoelectrons drift back towards the wire and may start a new avalanche
 - Continuous discharge!

- Need 'quencher' molecules that absorb UV photons without creating photoelectrons:
 - CH$_4$, C$_2$H$_6$, CO$_2$, ...
Signal Induced by a Moving Charge

Choice of Gas 3: prevent ageing

deposits on the wire:

- Impurities in the gas (or in the chamber) may form deposits on the wire and reduce the gain.
- 'Whiskers' lead to HV instabilities.
- Prevention:
 - Build chamber in a clean room.
 - Use clean gas.
 - Add ~1% alcohol, water, or oxygen.

'whiskers':
ATLAS Drift Tube Chambers

- 6 drift tube layers, arranged in 2 multilayers glued to a spacer frame
- length: 1 – 6 m, width: 1 – 2 m
- optical system to monitor chamber deformations
- gas: Ar:CO$_2$ (93:7) to prevent aging, 3 bar
- chamber resolution: 50 µm
 - single tube resolution: 100 µm
 - required wire position accuracy: 20 µm
Assembly of MDT Chambers (Frascati, IT)
ATLAS muon spectrometer

"Excellent stand-alone capabilities and coverage in open geometry

"Complicated geometry and field configuration (large fluctuations in acceptance and performance over full potential $\eta \times \phi$ coverage ($|\eta| < 2.7$)
ATLAS Barrel muon system in the toroid field

Detailed field map needed!
"Superior combined momentum resolution in the central region with silicon tracker."
"Limited stand-alone resolution and trigger (at very high luminosities) due to multiple scattering in iron."
"Degraded overall resolution in the forward regions (|η| > 2.0) where solenoid bending power becomes insufficient."
Pseudo-rapidity

\[p_t = \sqrt{p_x^2 + p_y^2} \]
\[p = \sqrt{p_x^2 + p_y^2 + p_z^2} \]
\[\varphi = \arctan \left(\frac{p_y}{p_x} \right) \in [-\pi, \pi] \]
\[\theta = \arccos \left(\frac{p_z}{p} \right) \in [0, \pi] \]

Pseudo-rapidity: \(\eta = -\ln \left(\tan \left(\frac{\theta}{2} \right) \right) \)

(soft hadron production: \(\frac{dN}{d\eta} \approx \text{const.} \) 'central rapidity plateau')

<table>
<thead>
<tr>
<th>(\eta)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>90°</td>
</tr>
<tr>
<td>±1</td>
<td>±40°</td>
</tr>
<tr>
<td>±2</td>
<td>±15°</td>
</tr>
<tr>
<td>±3</td>
<td>±6°</td>
</tr>
<tr>
<td>±4</td>
<td>±2°</td>
</tr>
<tr>
<td>±5</td>
<td>±1°</td>
</tr>
</tbody>
</table>

Rapidity: \(y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) \)
\(y \approx \eta \) for \(p \gg m \)
CMS Muon chambers

cosmic ray muon track

iron

DESY summer students lectures 4.8.2009
ATLAS and CMS: muon momentum resolution

ATLAS barrel standalone

CMS barrel standalone

Estimated contribution to resolution (%) vs. p_t (GeV/c)
low-\(p_T\) muons

Requirements for muon identification and reconstruction at low \(p_T\)

" Identify track stub in first layer of muon system
" Check for minimum ionising signals in last layers of hadron calorimeter
" Match as precisely as feasible (within limitations due to large MS and energy loss in calorimetry) measured track in inner detector with track stub in muon system
Multi-wire proportional chambers MWPCs

String many anode wires between cathode planes:

- ±3 mm. max. drift time can be < 50 ns. Fast!
- 2 mm wire spacing, resolution ~ 0.5 mm

Signals can be extracted from the wire and both cathode planes. Cathodes can be segmented.

Georges Charpak, CERN Nobel prize 1992
CMS Cathode Strip Chambers

- Cathode strips: 0.1 mm resolution.
- Wires: 4 ns timing for the trigger.
- 6 planes/chamber
- 468 chambers
- 6000 m²
- 450k channels
ATLAS muon chamber wheel

Ø25m
RPC Resistive plate chambers

no wires!

2 Bakelite plates separated by a gas gap and 8kV.

a particles causes **local** discharge which induces signals in the readout strips.

RPCs are fast and stable at high rate. Used as trigger chambers.

D. Pitzl, DESY
Transition Radiation

- Relativistic particles passing through an interface radiate.

\[\langle \mathcal{P} \rangle \approx \frac{1}{\gamma} \]

\[\hbar \omega_p = 20 \text{ eV} \]
\[\hbar \omega_p = 0.7 \text{ eV} \]

polypropylene \((C_3H_6)_x\)

\[\omega_p^2 = \frac{n_e e^2}{m_e \varepsilon_0} \]

\[\gamma = \frac{E}{m} \]

\[\theta \approx 1/\gamma \]

\[\hbar \omega \approx 10-30 \text{ keV} \]

for \(\gamma \approx 10^4 \)

N \(\sim \gamma \hbar \omega_p \)

depends on particle!

\[\frac{d^2W}{d\Omega d\theta} = \frac{2\alpha \theta^3}{\pi} \left(\frac{1}{\gamma^2 + \theta^2 + \omega^2} - \frac{1}{\frac{1}{\gamma^2} + \theta^2 + \frac{\omega^2}{\omega^2}} \right)^2 \]

1% probability per foil

Xe gas to absorb X-ray.
e/π separation using TRT

ATLAS 20-GeV electrons
- beam-test data
- Monte-Carlo simulation

20-GeV pions
- beam-test data
- Monte-Carlo simulation

pion reduction by factor 75 for 90% electron efficiency
ATLAS Transition Radiation Tracker

Straw gas mixture:
Xe(70%) CO2(27%) O2(3%)

Radiator foils are placed between the straws

D. Pitzl, DESY
First cosmic ray event seen in the Barrel TRT!

D. Pitzl, DESY
ATLAS inner tracking: silicon and straws

red = tracks found in the silicon layers.

white = hits in the straw tubes.
36 hits/track: good for pattern recognition.
Time Projection Chamber in a solenoid field

Separate two regions:
- Drift along z: 20-30 µs/m.
- Amplify at the end plate

No material inside drift volume!

\[E \parallel B: \text{drifting electrons curl around B field lines: limited spread.} \]

D. Pitzl, DESY
ALICE TPC

max. drift time 88 µs.
LHC operates with low luminosity at ALICE (pp and PbPb).

D. Pitzl, DESY

Detectors 2.31
DESY summer students lectures 4.8.2009
TPC

Time Projection Chamber (TPC)

- Charged particle track
- Drift volume
- Gating grid (-100V)
- Cathode plane (GND)
- Sense wire plane (+1.5kV)
- Pad plane

$z = v_0 t$

ALICE TPC has 557568 Channels

Pad signal

D. Pitzl, DESY

Detectors 2.32

DESY summer students lectures 4.8.2009
Energy loss of charged particles in matter

- Charged particles loose energy in collisions with electrons in matter:

Bethe-Bloch:

\[
\frac{1}{\rho} \frac{dE}{dx} = -4 \pi N_A r_e^2 m_e c^2 \frac{Z^2}{A} \left[\ln \left(\frac{2 m_e c^2 \beta^2 \gamma^2}{\langle I \rangle} \right) - \beta^2 - \frac{\delta}{2} \right]
\]

\(\frac{dE}{d\rho x}\)

~\(1/\beta^2\)

Relativistic rise \(\sim \ln(\gamma)\)

Minimum at \(p/m \approx 3.5\) for all particles

In iron (\(\rho\)=7.9 g/cm\(^3\)):

\(\frac{dE}{dx} = 1.3\) GeV/m.
$\langle dE/dx \rangle$ averaged over many samplings:
$\sigma \sim \sqrt{N}$.

Good for particle identification at low momenta.
Cerenkov Radiation

Cerenkov-Effect:
A charged particle moving faster than the speed of light in a medium $v > c/n$ emits Cerenkov radiation.

Emission of a coherent wave front: $\cos \theta_c = 1/(\beta n)$
LHCb Cerenkov Detector

The Cerenkov cone is imaged into a ring at a position-sensitive photon detector. Ring radius \(\rightarrow \) Cerenkov angle \(\rightarrow \) particle velocity. Together with momentum measurement: determine particle mass. Good for \(\pi \) – \(K \) – \(p \) separation.

The Cherenkov cone is imaged into a ring at a position-sensitive photon detector. Ring radius \(\rightarrow \) Cerenkov angle \(\rightarrow \) particle velocity. Together with momentum measurement: determine particle mass. Good for \(\pi \) – \(K \) – \(p \) separation.

\[C_4F_{10}, \quad n=1.03 \]
\[\text{aerogel} \]
\[n=1.0014 \]
\[\text{mirror} \]
\[330 \text{ mrad} \]

\[\text{Beam pipe} \]
\[\text{low } \nu \]
\[\text{high } \nu \]

\[\theta_c \]

LHCb
Hybrid photon detector HPD

- A Cherenkov photon reaches the multialkali-coated quartz window of an HPD.
- A photoelectron is released, and is accelerated toward the silicon array by a 20kV potential.
- The photoelectron creates around 5,000 electron-hole pairs in the silicon.
- The silicon array has 1024 pixels for position measurement.
- Readout is by a bump-bonded amplifier and discriminator chip.
Summary

- Drift detectors
- muons systems
- MWPC, CSC, RPC
- transition radiation
- TPCs
- Bethe-Bloch dE/dx
- Cherenkov and HPDs