Physics at HERA

Summer Student Lectures 10-13 August 2009

Katja Krüger Kirchhoff-Institut für Physik H1 Collaboration email: katja.krueger@desy.de

Overview Part 4

- Jet Physics
 - Cross Sections
 - Strong Coupling
- Heavy Quarks
 - Charm
 - Beauty
- Diffraction

personal selection! many more analyses are done!

Jet Physics & the Strong Coupling α_s

What are Jets?

- jets are narrow bundles of hadrons originating from quarks or gluons
- can be used to study QCD and the strong coupling

How Are Jets Produced?

- do analysis in a frame where photon and proton collide headon (e.g. Breit frame)
- → LO DIS cannot produce transverse momentum
- → jets with transverse momentum can originate from bosongluon fusion (BGF) or QCD-Compton (QCDC) processes

Jet Cross Sections

- theory curve:
 - NLO QCD calculation
 - PDFs
 - $-\alpha_s$
 - hadronisation
- very good agreement of theory and data
- uncertainty on PDF and theory input leads to uncertainty on α_s

Jet Cross Sections

ratio of jet cross section to inclusive cross section has reduced uncertainties

- systematic
- PDFs

$\alpha_{\rm S}$ from Jets

• running of α_s visible in one measurement

theory

 uncertainties
 larger than
 experimental
 uncertainties

Running of $\alpha_{\rm S}$

combine α_s measurements with smallest errors in fit

Running of $\alpha_{\rm S}$

HERA

comparison with other HERA measurements

 $\alpha_{\rm s}({\rm M_{7}})$

Improved Parton Densities

- F_2 is only indirectly sensitive to the gluon
- → global fits (MRST, CTEQ) use Tevatron jet data
- → alternative: use HERA (di-)jet data

improvement at medium to large x

Heavy Quarks

Production of Heavy Quarks

predominantly via boson gluon fusion

large quark mass allows pQCD calculations

directly sensitive to gluon density in the proton

heavy quark contribution to structure function

$$\frac{d^2 \sigma^{b\bar{b}}}{dx \, dQ^2} = \frac{2 \pi \alpha^2}{x \, Q^4} Y_+ \left[F_2^{b\bar{b}}(x, Q^2) - \frac{y^2}{Y_+} F_L^{b\bar{b}}(x, Q^2) \right]$$

charm Signals

Katja Krüger

Physics @ HERA

D* Cross Section

good description by NLO pQCD calculation (HVQDIS) in full measured Q^2 range (> 4 orders of magnitude)

PDF: extracted from inclusive DIS

Tagging of beauty Quarks

- large transverse momenta due to large mass
- semileptonic decay
- long lifetime (*beauty* \sim 500 µm, *charm* \sim 100-300 µm)

beauty Cross Section Results

HERA

some data higher than NLO QCD theory, but good agreement for the most precise data

Contribution to the Cross Section

- large charm fraction (up to ~30%)
- small beauty fraction (%o to few %)
- charm and beauty thresholds
- reasonable description by theory

Contribution to the Structure Function

Diffraction

What is Diffraction?

- in general: in DIS events the proton breaks up
- in diffraction: the proton stays intact (but nevertheless W>M_P)

surprise: ~10% of all events at HERA are diffractive!

Diffraction

- idea: interaction
 between photon
 and proton by a
 "Pomeron"
 - colourless
 - already used to describe low
 energy hadronhadron scattering
 - no particle!

Physics in Diffraction

- many things similar to inclusive DIS
 - diffractive parton densities
 - jets in diffraction
 - heavy flavour in diffraction
- test of factorization
 - are the parton densities the same for all diffractive processes?
 - or: does the Pomeron know what happens at the photon vertex?

Diffractive Parton Densities

Diffractive Dijet Cross Sections

- shape of the QCD theory prediction agrees with the data
- normalization is wrong
- ➔ factorization is broken!

Vector Mesons in Diffration

- vector mesons (VM= $\rho, \omega, \varphi, J/\psi, ...$) have the same quantum numbers as the photon
- photon can fluctuate
 into a VM, afterwards
 the VM can scatter off
 the proton
- ,,hadron-hadron"
 scattering

Vector Mesons in Diffration

- light VMs (ρ, ω, φ) show the same dependence on the yp center-of-mass energy W
- heavier VMs (J/ψ, Y) show increasing W dependence with mass
- simple "Pomeron" picture doesn't work!

Deeply Virtual Compton Scattering

production of a real photon by scattering of a virtual photon on a proton

needs PDFs depending on \overline{x} and "skewedness" ξ

→ Generalized PDFs, extending standard PDFs to elastic form factors

Deeply Virtual Compton Scattering

 \rightarrow 2-gluon-exchange dominates

DVCS: Beam Charge Asymmetry

- same final state for DVCS and Bethe Heitler
- → interference
- → azimuthal asymmetry

DVCS: HERMES

- HERMES kinematic domain dominated by quark contribution
- Bethe-Heitler amplitude much larger than DVCS
- measure DVCS via interference with Bethe-Heitler

Summary

- HERA offered unique possibilities to study the structure of the proton
- perturbative QCD is a big success to desribe HERA data
- no significant deviation from the Standard Model found
- always prepare for the unexpected!