Physics at HERA

Summer Student Lectures 10-13 August 2009

Katja Krüger Kirchhoff-Institut für Physik H1 Collaboration email: katja.krueger@desy.de

ep Scattering & Structure Functions

"The" HERA Textbook Plots

Structure Functions F₁ & F₂

• the DIS cross section can be written as

$$\frac{d^{2}\sigma}{dx dQ^{2}} = \frac{4\pi\alpha^{2}}{Q^{4}} \frac{1}{x} \left[(1-y) F_{2}(x,Q^{2}) + \frac{y^{2}}{2} 2x F_{1}(x,Q^{2}) \right]$$
$$= \frac{4\pi\alpha^{2}}{Q^{4}} \frac{1}{x} \frac{E'}{E} \left[F_{2}(x,Q^{2}) \cos^{2}\frac{\Theta}{2} + \frac{Q^{2}}{2x^{2}M_{p}^{2}} 2x F_{1}(x,Q^{2}) \sin^{2}\frac{\Theta}{2} \right]$$

• comparison with Dirac formula

$$\left(\frac{d\sigma}{dQ^2}\right)_{\text{Dirac}} = \frac{4\pi\alpha^2 z^2}{Q^4} \left(\frac{E'}{E}\right)^2 \left[\cos^2\frac{\Theta}{2} + \frac{Q^2}{2M^2}\sin^2\frac{\Theta}{2}\right]$$

 \rightarrow F₂ corresponds to electric field of the parton

 \rightarrow F₁ corresponds to spin of the parton

Scaling: F_2 independent of Q^2

independent of Q^2 , we always see the same partons (=quarks)

(Naive) Quark Parton Model

- proton consists of 3 partons, identified with the QCD quarks
- during the interaction proton is "frozen"
- electron proton scattering is sum of incoherent electron quark scatterings
- proton structure is defined by parton distributions

from Povh et al., "Teilchen und Kerne"

Scaling Violations

Katja Krüger

Parton Evolution

- number of partons changes with Q²
- Q² can be interpreted as resolving power: $Q^2 \propto (\hbar/\lambda)^2$

small Q²:

- many partons with large x
- (nearly) no partons at low x

large Q²:

- less partons with large x
- more partons at low x

Skaling Violations

large *x*:
quarks radiate gluons,
so the studied *x* decreases
→ F₂ decreases with increasing Q²

small *x*:
gluons split into seaquarks,
so more quarks become visible
→ F₂ increases with increasing Q²

DGLAP Evolution Equations

$$\frac{\partial}{\partial \log Q^{2}} \begin{bmatrix} q(x, Q^{2}) \\ q(x, Q^{2}) \\ g(x, Q^{2}) \end{bmatrix} = \frac{\alpha_{s}}{2\pi} \begin{bmatrix} P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} & P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} & P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} & P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ \gamma_{d} \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma$$

- Q² dependence of quark densities q(x,Q²) and gluon density g(x,Q²) is predicted
- no prediction for the x dependence → initial condition needed

HERA Kinematic Range

Events in Different Regions

F_a vs. C

- HERA data cover huge range:
 5 orders in Q² and 4 orders in x
- approximate scaling at large x
- clear scaling violations at small x

F_2 vs. Q²: example bins

- clear scaling violations at small x
- approximate scaling at large x

 F_2 vs. x

strong rise towards low x, steepness rising with Q²

DGLAP Evolution Equations

$$\frac{\partial}{\partial \log Q^{2}} \begin{bmatrix} q(x, Q^{2}) \\ q(x, Q^{2}) \\ g(x, Q^{2}) \end{bmatrix} = \frac{\alpha_{s}}{2\pi} \begin{bmatrix} P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} & P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} & P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} & P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} \\ P_{q} \begin{bmatrix} \gamma_{d} \\ x & m \end{bmatrix} & P_{q} \begin{bmatrix} \gamma_{d} \\ \gamma_{d} \\ x & m \end{bmatrix} \\ P_{\otimes} \int (x, Q^{2}) = \int \frac{dy}{\gamma} \mathcal{P}(x_{f} y) f(y, Q^{2}) \\ \times \end{bmatrix}$$

• Q^2 dependence of quark densities $q(x,Q^2)$ and gluon density $g(x,Q^2)$ is predicted

Parton Density Fits

DGLAP predicts only Q² dependence

- → assume parametrisation of the parton density functions (PDFs) as a function of x at a starting scale Q_0^2 (typically around 4 - 7 GeV²): $x q(x, Q_0^2) = A x^B (1-x)^C [1+Dx+Ex^2+Fx^3]$
- → evolve the PDFs to all measured Q², calculate F_2 , and fit the parameters to match the data
- some freedom in the procedure!
 - how many parameters, which Q_0^2 ?
 - how to combine quark and antiquark densities?

Parton Density Fits

quark and antiquark densities:

- most general: $u, \overline{u}, d, \overline{d}, s, \overline{s}, c, \overline{c}, (b, \overline{b})$
- distinguish valence and sea quarks (ZEUS): $u_v, d_v, sea, \overline{d} - \overline{u}$
- distinguish *up*-type and *down*-type quarks (H1): U=u+c, D=d+s(+b) $\overline{U}=\overline{u}+\overline{c}$, $\overline{D}=\overline{d}+\overline{s}(+\overline{b})$ $\rightarrow u_v=U-\overline{U}, d_v=D-\overline{D}$

Combined H1 & ZEUS Parton Density

Katja Krüger

Physics @ HERA

Longitudinal Structure Function F_L

- Callan-Gross relation $2 \ge F_1 = F_2$ only true in naive Quark-Parton-Model
- the longitudinal structure function F_L is defined as $F_L = F_2 2 \times F_1$
- F_L is directly proportional to the gluon density
- for a measurement of F_L one needs data at the same x and Q², but different y $\frac{d^2 \sigma}{dx \, dQ^2} = \frac{4 \pi \alpha^2}{Q^4} \frac{1}{x} (1 - y + \frac{y^2}{2}) \left[F_2(x, Q^2) - \frac{y^2/2}{1 - y + y^2/2} F_L(x, Q^2) \right]$
- only possible with different s because $Q^2 = xys$
- → measure at different beam energies!

Longitudinal Structure Function $F_{\rm L}$

$$\sigma_{r} = \frac{x Q^{4}}{2 \pi \alpha^{2}} \frac{1}{Y_{+}} \frac{d^{2} \sigma}{dx dQ^{2}}$$

= $F_{2}(x, Q^{2}) - \frac{y^{2}}{Y_{+}} F_{L}(x, Q^{2})$
with $Y_{+} = 1 + (1 - y)^{2}$

- linear expression in y²/Y₊
- → use linear fits in
 y²/Y₊ and determine
 F_L from slope

Longitudinal Structure Function $F_{\rm L}$

- ZEUS: simulatanous determination of F_2 and F_L
- consistent with PDF fit to F₂
- most precise information on gluon still from scaling violations

High Q² & Electroweak Physics

More Structure Functions

High Q² Neutral Current

• difference between e^+p and e^-p only at large $Q^2 \approx M_Z^2$

→ $\gamma - Z^0$ interference

High Q² Neutral Current

High Q² Neutral Current

- no significant deviation from Standard Model Fit at high Q^2
- can be interpreted as limit on quark size: $< 0.6 \cdot 10^{-18}$ m

Charged Current Interactions

Charged Current Cross Section

$$\frac{d^2 \sigma_{CC}^{\pm}}{dx \, dQ^2} = \frac{G_F^2}{4 \pi x} \left(\frac{M_W^2}{M_W^2 + Q^2} \right)^2 Y_+ \left[W_2^{\pm} - \frac{y^2}{Y_+} W_L^{\pm} \mp \frac{Y_-}{Y_+} x W_3^{\pm} \right]$$

- W bosons couple differently to *up* and *down*-type quarks
- in the QPM: $W_2^- = x(U + \overline{D}), \quad xW_3^- = x(U - \overline{D})$ $W_2^+ = x(\overline{U} + D), \quad xW_3^+ = x(D - \overline{U})$ $W_L^{\pm} = 0$

→
$$\sigma_{CC}^{-} \propto x \left[U + (1-y)^2 \overline{D} \right]$$

 $\sigma_{CC}^{+} \propto x \left[\overline{U} + (1-y)^2 D \right]$

Comparison NC vs. CC

dơ/dQ² (pb/GeV²) 01 10

 $M_{W}^{2} + Q$

HERA I & II

H1 e⁺p NC 94-07 (prel.) H1 e p NC 94-07 (prel.)

ZEUS e⁺p NC 06-07 (prel.)

SM e⁺p NC (HERAPDF 0.1)

SM e p NC (HERAPDF 0.1)

ZEUS e p NC 05-06

- at low Q^2 : different dependences because of photon in NC
- at high Q^2 : "electroweak 11

Electroweak Parameters: W Mass

• $G = G_F$

determined by normalization of the CC cross section

 M_{prop} = M_W determined by the Q² dependence of the CC cross section
 82.87 ± 1.82_{exp} (+0.30_{-0.16})_{model} GeV

Summary

- inclusive *ep* scattering reveales structure of the proton
- large amount of gluons in the proton

• Standard Modell can be cross checked