DESY Summer Student Program 19./20. Aug 2009 Hamburg

Physics in pp collisions LHC, machine, detectors, physics

Johannes Haller (Universität Hamburg)

Today:

Y: Motivation/Introduction: open questions in particle physics

- The Standard Model
- New physics?
- Hadron Collider Physics
 - Overview of colliders
 - pp colliders vs e⁺e⁻ colliders
 - LHC
 - Conditions of data taking
 - Main physics goals
- Detectors: ATLAS and CMS
 - Reminder: general design of collider detectors
 - Main features ATLAS
 - Main features CMS
 - Data acquisition and trigger systems

Tomorrow:
Physics: Existing results and prospects at the LHC:

- Test of the SM at Hadron Colliders (Top, W/Z, QCD)
- Higgs
- SUSY

Answers to the most fundamental questions:

- What is the world made of ?
- Origin and fate of the universe
- What are the fundamental particles and their interactions?

small → large

early →today/late

Answer of the Standard Model:

- The elementary particles of matter are quarks and leptons
- Interactions described by exchange
 - of gauge bosons (y,W/Z)

> The SM is a local gauge symmetry with the gauge group $U(1)_{Y} x SU(2)_{L} x SU(3)_{C}$

Johannes Haller

UΗ

- So far the Standard Model describes all measurements of scattering experiments with impressive precision (up to 10⁻⁵ in some cases)
 - High energy regime and low energy regime
- Most precise measurements: properties of the Z boson at the e⁺e⁻ collider LEP

Extremely successful !!!

	Measurement	Fit	$ O^{\text{meas}} - O^{\text{fit}} / \sigma^{\text{meas}}$
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02768	
m _z [GeV]	91.1875 ± 0.0021	91.1874	
Γ _z [GeV]	2.4952 ± 0.0023	2.4959	-
σ_{had}^0 [nb]	41.540 ± 0.037	41.478	
R	20.767 ± 0.025	20.742	
A ^{0,1} _{fb}	0.01714 ± 0.00095	0.01645	_
$A_{I}(P_{\tau})$	0.1465 ± 0.0032	0.1481	-
R _b	0.21629 ± 0.00066	0.21579	_
R	0.1721 ± 0.0030	0.1723	
A ^{0,b}	0.0992 ± 0.0016	0.1038	
A ^{0,c}	0.0707 ± 0.0035	0.0742	
A _b	0.923 ± 0.020	0.935	
A _c	0.670 ± 0.027	0.668	
A _I (SLD)	0.1513 ± 0.0021	0.1481	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
	80.399 ± 0.023		
Γ _w [GeV]	2.098 ± 0.048	2.092	
m _t [GeV]	173.1 ± 1.3	173.2	
August 2009			0 1 2 3

- Measurements are very precise
- Comparison with calculations including higher orders needed.
- Parameters not directly accessible can be determined since they enter the calculations
- Comparison of indirect predictions (from calculations) with direct measurements
 - Prediction of the top mass
 - Prediction of the W mass

$$\chi^{2} = \sum_{i} \frac{\left(x_{i, \exp} - x_{i, \text{theo}}(y)\right)^{2}}{\sigma_{i}^{2}}$$

Same procedure today: Prediction of the SM Higgs Mass

- So far Higgs not yet discovered.
- Full SM confirmation needs: discovery of Higgs and measurement of its mass!

pp collisions

Experimental Hints for New Physics:

Velocities of galaxy rotation

Observed and expected for visible

Distance

Deflection of light of

far objects on galaxy

clusters (gravitational

lenses)

In both cases: visible (SM) matter is not enough for description of observations

Established: A type of matter exists in the universe which is not described by the SM \rightarrow "Dark Matter"

Gravitation is neglected in the SM. theoret. problem of But: Gravitation gets strong at small scales the SM $(r \sim 1.6 \cdot 10^{-35} m)$, i.e. large energies ($E_{P} = 1.2 \cdot 10^{19} GeV$). No prediction power of the SM in this regime. ²χ² SM has internal problem with mass of the Higgs boson: Determination from experimental $M_H^2 = M_{H,bare}^2 + \delta M_H^2$ measurements: 100 30 m_н [GeV] indirectly: m_H~100 GeV $\delta M_H^2 = \frac{|g_f|^2}{16\pi^2} [-2\Lambda^2 + 6m_f^2 \ln(\Lambda/m_f)]$ theoretical calculation: - Fermion loops result in guadratic "Hierarchy- Problem" divergent contribution to mass of the SM – Λ "cut-off" is the energy up to which the SM is applicable (e.g. E_{P}). ><u>wanted</u>: theory which is able natural Higgs mass is rather to describe the experimental data m_µ~ 10¹⁴-10¹⁷ GeV to solve the problems of the SM \rightarrow extensions of the SM

 ➢ Introduction of a new "SuperSymmetry"
 Fermion ← → Boson

UH

 Introduction of SUSY Partners for all SM particles

SM Teilchen (R=1)	SUSY Partner (R=-1)		
Quarks q	Squarks $ ilde{q}$		
Leptons 1	Sleptons $ ilde{l}$		
W [±] , Ζ ⁰ ,γ,	Neutralinos, $\chi^0_{1,2,3,4}$		
Higgs: h, A ⁰ , H ⁰ , H [±]	Charginos $\chi^{\pm}_{1,2}$		
Gluons g	Gluino ĝ		

→ New contributions to Higgs Mass
> contributions cancel
if $\Delta M < 1 \text{ TeV}$ → Solution to hierarchy
problem
H⁰ -----H⁰

SUSY can provide explanation for Dark Matter:

If stable, the Lightest Susy Particle leads to the correct relic density in the universe

- → SUSY is first candidate theory for New Physics
- ... and note: $M_{SUSY} < 1 \text{ TeV}$

- The Standard Model was/is extremely successful
 - Most precise verifications at e⁺e⁻ collisions at LEP
 - Prediction of the top mass prior to its discovery
 - Prediction of the Mass of the Higgs \rightarrow light Higgs, not yet discovered, last particle!
- We know that the SM is not the final theory
 - Gravity is not included \rightarrow internal problem of hierarchy
 - Dark Matter not described in SM
 - Several theories proposed: most attractive: SUSY
 - Expect deviation from SM below 1 TeV
- most important open questions in particle physics:
 - Search for the SM Higgs
 - Search for new physics (e.g. SUSY)
 - Possible reasons why both effects have not been seen yet:
 - Relevant masses maybe be higher than experimentally accessible so far?
 - Processes extremely rare?

These are the reasons to build a collider with high centre-of-mass energy and high luminosity: the Large Hadron Collider

The rate of produced events for a given physics process is given by

- Dimensions: s^{-1} = $cm^{-2}s^{-1}$ cm^2 1 b= $10^{-28}m^2$
- Luminosity depends on machine parameters:
 - Number of particles per bunch, beam width at IA region, repetition frequency, etc.
- In order to achieve acceptable production rates for interesting physics processes, the luminosity must be high
 - L = $2 \cdot 10^{32}$ cm⁻²s⁻¹ TeVatron
 - L= 10³³ cm⁻²s⁻¹ planned for the initial phase of the LHC (1-2 years)
 - L= 10³⁴ cm⁻²s⁻¹ LHC design luminosity, very large!
- One experimental year has $\sim 10^7 \text{s} \rightarrow$ integrated luminosity at the LHC
 - 1 fb⁻¹ per year in the initial phase (after a slow start-up)
 - 100 fb⁻¹ per year at design luminosity

UH

Overview: current colliders

	beams, energies (GeV)	√s (GeV)	Data taking	L (10 ³⁰ s ⁻¹ cm ⁻²)	L _{int} (pb ⁻¹)	site
LEP	<mark>e⁺e</mark> ∹: 45(104)x45(104)	90-208	1992- 2000	100	LEPI: ~160 (je Exp.)	CERN
HERA	<mark>e⁺p:</mark> 30 x 920	320	1991- 2007	50	~ 600	DESY
TeVatron	рр . 980 x 980	1 960	92-96, 01-11(?)	200	160, ~ 8 000	FNAL
PEPII	e⁺e∹: 9.0x3.1	10.6	1999- 2008	12.000	450 000	SLAC
KEKB	e⁺e∹: 8.0x3.5	10.6	1999- 2009(?)	17 000	700 000	KEK
LHC (!)	рр: 7000 x 7000	14 000	2009 - ?	10 000	?	CERN
ILC	e⁺e∹: 500 x 500	1 000	2015(?)-	20 000		??

<u>e+e-</u> collider:

- ➤ Collisions of fundamental particles → clean events since no further partons involved
- If both beam have the same energy, centre-of-mass system identical to lab system.
- Complete annihilation: kinematics fixed, since initial state exactly known.
- > $\Sigma P_x=0$, $\Sigma P_y=0$, $\Sigma P_z=0$, $\Sigma E=2E_{beam}$ known and conserved, can be used in the reconstruction of the events in the final state \rightarrow missing energy
- → Excellent machines for precision measurements

pp collider:

- Beam particles are made of partons (gluons and quarks)
- pp collisions are much more complex

Why pp colliders?

Main drawback of e⁺e⁻ colliders:

- Energy loss due to synchrotron radiation
- > Calculable in classical electrodynamics: accelerated charges radiate
- ➤ Lost power in ring with radius R and beam energy E:

$$P = \frac{2e^2c}{3R^2} \left(\frac{E}{mc^2}\right)^4$$

$$-\Delta E \approx \frac{2\pi R}{c} P = \frac{4\pi e^2}{3R} \left(\frac{E}{mc^2}\right)^4$$

Ratio of energy loss between protons and electrons:

$$rac{\Delta E(e)}{\Delta E(p)} = \left(rac{m_p}{m_e}
ight)^4 \sim 10^{13}$$

future colliders: > pp Ring-accelerator (LHC) > e⁺e⁻ Linear Collider (ILC) > Muon Collider ??

- Proton beam can be seen as a beam of quarks and gluons with a wide range of energies
- The proton constituents (partons) carry only a fraction 0< x< 1 of the proton momentum

 $p_2 = x_2 \, p_B$ simplificat

- simplification $(if x_1 = x_2 = x)$
- > Moving centre-of-mass system $(x_1 \neq x_2)$
- P_z is not known, since x values of individual event unknown.
- Important variable: transverse momentum: P_T
- Reduced centre-of-mass energy

Example:

- ≻ LHC: √s=14 TeV, TeVatron: √s=1.9 TeV
- ➤ To produce a particle with a certain mass m: x√s>m

	LHC	Tevatron
100 GeV:	x ~ 0.007	0.05
5 TeV:	x ~ 0.36	22

- At the LHC: for SM processes (~100 GeV) partons with small x needed
- because of proton structure (see next slide): LHC =,,gluon collider^w

- From where do we know the x values?
- The structure of the proton is investigated in <u>Deep Inelastic</u> <u>Scattering</u>

Highest energies are reached at the ep collider HERA: Scattering of 30 GeV electrons on 900 GeV Protons: Test of the proton structure down to 10⁻¹⁸m

Structure of the proton: Parton density functions (PDFs)

u- and d-quarks at high values of xGluons dominate at low values !!

Knowledge of PDFs very important for LHS predictions

ollisions

- Partons in the proton are strongly interacting particles
 - \rightarrow high cross sections
 - \rightarrow high rates
- Even possible: several interactions in one bunch crossing
- ➢ Rate: ~1/Q⁴
 - Q: transferred 4-momentum
 - Most of the events are "soft"
 - Only a small fraction contains interesting events with high energies

In addition the interpretation of a typical hard event is difficult due to QCD:

> In general: events from pp collisions are difficult to analyze

Discovery machine: LHC

Machine parameters	LHC
Luminosity [cm ⁻² s ⁻¹]	10 ³⁴
√s [TeV]	14
BC interval [ns]	25
BC rate [MHz]	40
Bunches per beam	2835 (3564)

➢Proton-Proton-Collider

>4 experiments: Atlas, CMS , (LHCb, Alice) > \sqrt{s} =14 TeV !! (x7 Tevatron)

≻L: 100 times TeVatron

Discovery machine LHC

superconducting dipole magnets

- challenge: magnetic field of 8.33 Tesla
- in total 1232 magnets, each 15 m long
- operation temperature of 1.9 K

LHC is the largest cryogenic system in the world

- Energy stored in the magnet system:
- Energy stored in one (of 8) dipole circuits:
- Energy stored in one beam:
- Energy to heat and melt one kg of copper:

10 GJoule 1.1 GJ (sector) 362 MJ 0.7 MJ

September 2008

- In September 2008 the first beams circulated in the machine
- Huge media presence at CERN

- Very nice start-up of the accelerator
- E.g RF-capture of the bunches:

First attempts:

Later:

Johannes Haller

After 3 days of excellent progress with beams

Commissioning with beam interrupted by a series of hardware failures - not related to beams

• two large transformers ; 13 - 18 September 2008 '08

• 19 Sept. '08 at 11:18:36, incident during hardware commissioning of sector 3/4 towards 5.5 TeV/9.3 kA, at 8.7 kA or ~ 5.2 TeV, of the 600 MJ stored energy about 2/3 dissipated into the cold-mass 1 MJ melts 2.4 kg Cu

bad splice 220 n Ω at electrical connection between dipole and quad Q23, ~ 6 t He or 1/2 of arc lost; pressure built up in adjacent each 107 m long, vacuum sub-sectors causing significant collateral damage.

details : LHC-PROJECT-REPORT-1168 March '09

08:2009

some typical numbers and back of envelope estimates :

good splice ~ 0.3 n Ω , I = 12 kA, U = R I = 3.6 μ V (now) possible to check

Helmut Burkhard (CERN) at Lepton-photon conference $P = R I^2 = 0.043 W$ quench would need locally > 10 W - depending on position - less critical in magnet new QPS triggers at 0.3 mV for > 10 ms

LHC dipole L = 100 mH stored energy in single dipole $I^2 L/2 = 7.2 MJ \times 154 = 1.1 GJ / sector$

Current status, strategy for restart

Current status - August 2009

damage repair

• 39 dipoles and 14 quadrupoles removed - and re-installed. Last magnet back in tunnel on 30/04/2009, electrical connections finished 2nd June

avoid reoccurrence

- Improved diagnostics, measurements of magnet interconnects splice resistance
- > 50 % of machine (sectors, 1-2, 3-4, 5-6, 6-7, all standalone magnets) with fast pressure release valves
- Improved anchoring on vacuum barriers around the ring
- Enhanced Quench Protection System
- aperture symmetric quenches and joints in magnets
 2 × faster discharge
- Remaining risks minimized by keeping maximum beam energy limited to 3.5 5 TeV for the first run

Restart LHC with beam by mid-November 2009

Go in three steps

- 1. collisions at injection energy 2×0.45 TeV = 0.9 TeV
- 2. physics run at 2×3.5 TeV = 7 TeV
- 3. physics run at increased energy, max. 2×5 TeV = 10 TeV

JC

Total pp- cross section:

- High cross section
- High design luminosity

~23 Interactions / Bunch crossing ~1700 Particles / Bunch crossing

Data taking at LHC design luminosity

Detectors and event selection systems at the LHC are designed to cope with these conditions

Johannes Haller

 μ^+

'n

- The physics aims of the experiments have driven their design
- Quickly here: golden channels at the LHC
 - Search for the Higgs Boson:

Search for New Physics/ SUSY:

Remember the principles of collider detectors:

Subdetectors arranged in several layers around the interaction point

LHC detectors: ATLAS

40 m

characteristic features:

- Muon spectrometer with three toroidal magnets $(H \rightarrow 4\mu)$
- highly segmented LAr em calorimeter (H \rightarrow 4I, H $\rightarrow \gamma \gamma$)
- · Tile calorimeter for hadronic activity

Johannes Haller

27

collider

detector

ever built

ATLAS toroid

ATLAS toroid

Johannes Haller

pp collisions

Johannes Haller

Johannes Haller

Detectors: CMS

Detectors: CMS

- -advantage: a single homogeneous system, precise position measurements
- $\neg disadvantage:$ a lot of material in front of the calorimeters (particles can shower before) , expensive
- \neg No longitudinal segmentation in electromagnetic calorimeter
- \neg Coil for B field <u>after</u> calorimeter ("large coil solution")
 - -Advantage: less material in front of calorimeter
 - -Disadvantage: expensive, calorimeter restricted in width

Johannes Haller

pp collisions

• Up to 23 overlay events: "Pile-up" \rightarrow Detectors with high granularity

		Subdetector	channels	Fragment size [KB]
	Calo- Inner p-System rimeter Detec	Pixel	8.0*10 ⁷	60
		SCT	6.2*10 ⁶	110
		TRT	3.7*10 ⁵	307
		LAr	1.8*10 ⁵	576
		Tile	1.0*10 ⁴	48
		MDT	3.4*10 ⁵	154
		CSC	3.1*10 ⁴	10
		RPC	3.5*10 ⁵	12
		TGC	3.2*10 ⁵	6
		L1 Trigger		46

■ ATLAS/CMS Event size: ~1.5 MB → high demands for data acquisition systems ("DAQ")

Affordable capacities for storage and reprocessing of data: <300 MB/sec</p>

- Ergo: maximum storage rate restricted to <200 Hz</p>
- Trigger and Data-acquisition system are crucial at LHC/Hadron-Colliders

- only 1 out of 200 000 Events can be stored.
- "trigger" selection is crucial for physics goals:
 - Selection of rare discovery physics : Higgs, SUSY, Exotics
 - Known SM physics (W, Z, top): for calibration, efficiency studies, etc.
- Strategy: "inclusive" selection of
 - Leptons: e, μ, τ
 - Jets
 - Photons
 - E_T^{miss}
- → "not to miss the unexpected", New Physics !!

UΗ

A possible trigger menue: (L=10³³cm⁻²s⁻¹)

Signatur	Rate [Hz]	Physik-goal
µ20i	40	ttH, H→WW, ZZ, top, W', Z', Z→II, LQs
2µ10	10	H→WW, ZZ, Z→II
e25i,γ60i	40,25	ttH, H→WW, γγ, top, W', Ζ', Ζ→II, W→vI LQs
2e15i,2y20i	<1,2	H→WW, ZZ, γγ, Z→II
j400	10	QCD, New Physics
3j165	10	QCD, New Physics
4j110	10	QCD, New Physics
j70+xE70	20	Supersymmetry
µ10+e15i	1	H→WW, ZZ, tt

- Always: trigger thresholds are a compromise:
 - Coverage of phase space:
 - \rightarrow low thresholds
 - small trigger rate \rightarrow high thresholds
 - Requirements on trigger systems:
 - High rejection rates
 - Efficient selection

→ LHC: multi-layer trigger systems:

- Level-1:
 - Fast, coarse calculations
 - Custom-made hardware
- Higher trigger levels:
 - More time available
 - More exact calculations ("refinement")
 - selection in software, large computer farms

3-Level Trigger System:

- LVL1 decision based on data from calorimeters and muon trigger chambers; synchronous at 40 MHz; bunch crossing identification
- 2) <u>LVL2</u> uses Regions of Interest (identified by LVL1) data (ca. 2%) with full granularity from all detectors, asynchronous
- 3) <u>Event Filter</u> has access to full event and can perform more refined event reconstruction

Y Typical design of trigger systems at the LHC: Level-1

- Δt_{BC} =25ns « possible latency
- But: dead time must be small
- schematic design of Level-1 (ATLAS and CMS):

- During the latency all data must be kept in pipelines.
- Important: small latency
- ◊ Fast decision
- ◊ Hardware Trigger

UH

Level-1: synchronization and time resolution

- Trigger decision should be based on signals of a single bunch crossing
- But: LHC intervall is small and LHC Detectors are huge
- Flight distance of particles between 2 BCs: 7.5m

Maschine	Δt _{BC} [ns]
LEP	22 000
Tevatron 1	3 500
Tevatron 2	396/132
HERA	96
LHC	25

- needed:
 - synchronization of signals with delays
 - correct identification of corrects BC (needs good time resolution)

UH

Level-1 Myon-Trigger: Beispiel ATLAS

- Dedicated muon chambers with good time resolution:
- Local track search by electronics installed on the detector

- Search for coincidences in different detector layers
- Programmable width of coincidence windows allows coarse determination of the transverse momentum

UH

- Central Trigger Processor calculated Level-1-decision
- "L1Accept"-Signal (L1A): OR from 256 "Trigger Items"
- Distribution of L1A-Signal via optical fibres (TTC system) to start detector readout

Design of LHC Trigger systems: higher trigger levels

In common:

UΗ

- Readout-Buffer: decoupling of HLT and L1
- Huge Network Switches for parallel event building (point-to-point).
- Huge, fully programmable and scalable computer farms

Differences::

- ATLAS: L2-Farm used as a preselection step
 - Looks only at interesting regions of the event
 - Event building with "only" 3kHz

Johannes Haller

ATLAS Trigger & DAQ Implementation

- Main physics goal of the LHC
 - Search for the Higgs
 - Search for deviations from the SM, New physics
- pp colliders: discovery machines
- e⁺e⁻ colliders: precision measurements
- LHC:
 - Highest energy collider
 - Highest luminosity collider
- Data taking at the LHC is an unprecedented challenge for detectors and their DAQ and trigger systems

Triggering:

- Multi-level system used
- First level in custom made hardware
- Higher levels run in huge computer farms at the surface