DESY Summer Student Program 19./20. Aug 2009
 Hamburg

Physics in pp collisions
 LHC, machine, detectors, physics

Johannes Haller (Universität Hamburg)

Content

Today:

- Motivation/Introduction: open questions in particle physics
- The Standard Model
- New physics?
- Hadron Collider Physics
- Overview of colliders
- pp colliders vs $\mathrm{e}^{+} \mathrm{e}^{-}$colliders
- LHC
b Conditions of data taking
- Main physics goals
- Detectors: ATLAS and CMS
- Reminder: general design of collider detectors
- Main features ATLAS
- Main features CMS
- Data acquisition and trigger systems

Tomorrow: Physics: Existing results and prospects at the LHC:

- Test of the SM at Hadron Colliders (Top, W/Z, QCD)
- Higgs
- SUSY

Answers to the most fundamental questions:

- What is the world made of ?
- Origin and fate of the universe
- What are the fundamental particles and their interactions?

$$
\text { small } \rightarrow \text { large } \quad \text { early } \rightarrow \text { today/late }
$$

Answer of the Standard Model:

- The elementary particles of matter are quarks and leptons
- Interactions described by exchange of gauge bosons ($\gamma, \mathrm{W} / \mathrm{Z}$)

Grösse....
..in Atomen in Metern
$\frac{1}{10,000}$
$\frac{1}{100,000}$

One-page summary: the standard model

$>$ The SM is a local gauge symmetry with the gauge group $U(1)_{Y} \times S U(2)_{L} \times S U(3)_{C}$

Spin $1 / 2$: Matter-Particles

1) Leptons

Quantum numbers

 ($\mathrm{Q}, \mathrm{SU}(3), \mathrm{SU}(2))$ ($\underline{3}=$ Triplett) ($\underline{1}=$ Singlett)$$
\begin{array}{|c|}
\hline\left(0, \underline{1},+\frac{1}{2}\right) \\
\left(-1, \underline{1},-\frac{1}{2}\right)
\end{array} \quad(-1, \underline{1}, \underline{1})
$$

Spin 0 Higgs, resp.

 for mass>SU(2) Doublett:
$\Phi=\binom{\Phi_{1}}{\Phi_{2}} \Rightarrow H=\mathrm{Higgs}$
$>$ Higgs-Pot. V(Φ)
$>$ Spontaneous
symmetry breaking:
$>\mathrm{V}(\Phi=0)$ is not minimum
$>$ Vacuum $=$ minimum of $\mathrm{V}(\Phi)$ breaks the $\mathrm{SU}(2)$ symmetry

Spin 1 gauge symmetries of Lagragian predict Gauge Bosons and interactions:

Status of the Standard Model

- So far the Standard Model describes all measurements of scatering experiments with impressive precision (up to 10^{-5} in some cases)
- High energy regime and low energy regime
- Most precise measurements: properties of the Z boson at the $\mathrm{e}^{+} \mathrm{e}^{-}$collider LEP

- SM describes all these measurements
- Extremely successful !!!

	Measurement	Fit	$\begin{aligned} & 1 \mathrm{O}^{\mathrm{me}} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{t} / / \sigma^{\text {meas }} \\ & 2 \end{aligned}$
$\overline{\Delta \alpha_{\text {had }}(5)}\left(m_{z}\right)$	0.02758 ± 0.00035	0.02768	-	
$\mathrm{m}_{\mathrm{z}}[\mathrm{GeV}]$	91.1875 ± 0.0021	91.1874		
$\Gamma_{Z}[\mathrm{GeV}]$	2.4952 ± 0.0023	2.4959		
$\sigma_{\text {had }}^{0}$ [nb]	41.540 ± 0.037	41.478		
R_{1}	20.767 ± 0.025	20.742		
$\mathrm{A}_{\mathrm{fb}}^{0, \mathrm{l}}$	0.01714 ± 0.00095	0.01645		
$\mathrm{A}_{1}\left(\mathrm{P}_{\tau}\right)$	0.1465 ± 0.0032	0.1481		
R_{b}	0.21629 ± 0.00066	0.21579		
R_{c}	0.1721 ± 0.0030	0.1723		
$\mathrm{A}_{\mathrm{fb}}^{0, \mathrm{~b}}$	0.0992 ± 0.0016	0.1038		
$\mathrm{A}_{\mathrm{fb}}^{0, \mathrm{c}}$	0.0707 ± 0.0035	0.0742		
A_{b}	0.923 ± 0.020	0.935		
A_{c}	0.670 ± 0.027	0.668	1	
$A_{1}($ SLD $)$	0.1513 ± 0.0021	0.1481		
$\sin ^{2} \theta_{\text {eff }}^{\text {ept }}\left(Q_{\text {fid }}\right)$	0.2324 ± 0.0012	0.2314		
$\mathrm{m}_{\mathrm{W}}[\mathrm{GeV}]$	80.399 ± 0.023	80.379		
$\Gamma_{W}[\mathrm{GeV}]$	2.098 ± 0.048	2.092	1	
$\mathrm{m}_{\mathrm{t}}[\mathrm{GeV}]$	173.1 ± 1.3	173.2	1	
August 2009			0	23

- Measurements are very precise
- Comparison with calculations including higher orders needed.
- Parameters not directly accessible can be determined since they enter the calculations
- Comparison of indirect predictions (from calculations) with direct measurements
- Prediction of the top mass
- Prediction of the W mass

$$
\chi^{2}=\sum_{i} \frac{\left(x_{i, \text { exp }}-x_{i, \text {,heo }}(y)\right)^{2}}{\sigma_{i}^{2}}
$$

- Same procedure today: Prediction of the SM Higgs Mass

- So far Higgs not yet discovered.
- Full SM confirmation needs: discovery of Higgs and measurement of its mass!

Why New Physics?

Experimental Hints for New

Physics:

Velocities of galaxy rotation

Deflection of light of far objects on galaxy clusters (gravitational lenses)

In both cases: visible (SM) matter is not enough for description of observations

Measurement of the fluctuations of the cosmic microwave background
\rightarrow Composition of the energy density of the universe

WMAP (2003):

With the SM only a fraction of the matter in the universe can be described

Established: A type of matter exists in the universe which is not described by the SM \rightarrow "Dark Matter"

Why New Physics (cont.)?
theoret. problem of the SM

$$
\delta M_{H}^{2}=\frac{\left|g_{f}\right|^{2}}{16 \pi^{2}}\left[-2 \Lambda^{2}+6 m_{f}^{2} \ln \left(\Lambda / m_{f}\right)\right]
$$

„Hierarchy- Problem" of the SM
$>$ wanted: theory which is able
$>$ to describe the experimental data
$>$ to solve the problems of the SM
\rightarrow extensions of the SM

Possible solution: Supersymmetrie (SUSY)

> Introduction of a new "SuperSymmetry" Fermion $\leftarrow \rightarrow$ Boson
$>$ Introduction of SUSY Partners for all SM particles

\square	SM Teilchen (R=1)	SUSY Partner (R=-1)	
	Quarks q	Squarks	\tilde{q}
	Leptons 1	Sleptons	\widetilde{l}
	$\begin{aligned} & \mathrm{W}^{ \pm}, \mathrm{Z}^{0}, \gamma, \\ & \text { Higgs: } \mathrm{h}, \mathrm{~A}^{0}, \mathrm{H}^{0}, \mathrm{H}^{ \pm} \end{aligned}$	Neutralinos, Charginos	$\begin{gathered} \chi_{1,2,3,4}^{0} \\ \chi_{1,2}^{ \pm} \\ \hline \end{gathered}$
	Gluons g	Gluino	\tilde{g}

\rightarrow New contributions to Higgs Mass

$>$ contributions cancel if $\Delta \mathrm{M}<1 \mathrm{TeV}$
\rightarrow Solution to hierarchy problem

SUSY can provide explanation for Dark Matter:
If stable, the Lightest Susy
Particle leads to the correct relic density in the universe
\rightarrow SUSY is first candidate theory for New Physics
\ldots and note: $\mathrm{M}_{\text {SUSY }}<1 \mathrm{TeV}$

Summary so far

- The Standard Model was/is extremely successful
- Most precise verifications at $\mathrm{e}^{+} \mathrm{e}^{-}$collisions at LEP
- Prediction of the top mass prior to its discovery
- Prediction of the Mass of the Higgs \rightarrow light Higgs, not yet discovered, last particle!
- We know that the SM is not the final theory
- Gravity is not included \rightarrow internal problem of hierarchy
- Dark Matter not described in SM
- Several theories proposed: most attractive: SUSY
- Expect deviation from SM below 1 TeV
- most important open questions in particle physics:
- Search for the SM Higgs
- Search for new physics (e.g. SUSY)
- Possible reasons why both effects have not been seen yet:
- Relevant masses maybe be higher than experimentally accessible so far?
- Processes extremely rare?

These are the reasons to build a collider with high centre-of-mass energy and high luminosity: the Large Hadron Collider

Luminosity

- The rate of produced events for a given physics process is given by

$N \quad=\quad \mathrm{L} \quad \sigma \quad$| $L=$ Luminosity |
| :--- |
| $\sigma=$ cross section |

- Dimensions:

$$
s^{-1}
$$

$=\mathrm{cm}^{-2} \mathrm{~s}^{-1}$
cm ${ }^{2}$
$1 \mathrm{~b}=10^{-28} \mathrm{~m}^{2}$

- Luminosity depends on machine parameters:
- Number of particles per bunch, beam width at IA region, repetition frequency, etc.
- In order to achieve acceptable production rates for interesting physics processes, the luminosity must be high
- $\mathrm{L}=2 \cdot 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{TeV}$ atron
- $\mathrm{L}=10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ planned for the initial phase of the LHC (1-2 years)
- $L=10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{LHC}$ design luminosity, very large!
- One experimental year has $\sim 10^{7} s \rightarrow$ integrated luminosity at the LHC
- $1 \mathrm{fb}^{-1}$ per year in the initial phase (after a slow start-up)
= $100 \mathrm{fb}^{-1}$ per year at design luminosity

Overview: current colliders

	beams, energies (GeV)	$\sqrt{ }$ (GeV)	Data taking	$\begin{gathered} \mathrm{L} \\ \left(10^{30} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}\right) \end{gathered}$	$\begin{gathered} \mathrm{L}_{\mathrm{int}} \\ \left(\mathrm{pb}^{-1}\right) \end{gathered}$	site
LEP	$\begin{gathered} \mathrm{e}^{+} \mathrm{e}^{-:} \\ 45(104) \times 45(104) \\ \hline \end{gathered}$	90-208	$\begin{aligned} & 1992- \\ & 2000 \end{aligned}$	100	$\begin{aligned} & \text { LEPI: ~160 } \\ & \text { (je Exp.) } \end{aligned}$	CERN
HERA	$\begin{gathered} e^{ \pm} \mathrm{p}: \\ 30 \times 920 \end{gathered}$	320	$\begin{aligned} & 1991- \\ & 2007 \end{aligned}$	50	~ 600	DESY
TeVatron	$\begin{gathered} \mathrm{p} \overline{\mathrm{p}} \\ 980 \times 980 \end{gathered}$	1960	$\begin{gathered} \text { 92-96, } \\ \text { 01-11(?) } \end{gathered}$	200	$\begin{gathered} \text { 160, } \\ \sim 8000 \end{gathered}$	FNAL
PEPII	$\begin{gathered} \mathrm{e}^{+} \mathrm{e}: \\ 9.0 \times 3.1 \end{gathered}$	10.6	$\begin{aligned} & 1999- \\ & 2008 \end{aligned}$	12.000	450000	SLAC
KEKB	$\begin{gathered} \mathrm{e}^{+} \mathrm{e}: \\ 8.0 \times 3.5 \end{gathered}$	10.6	$\begin{gathered} \text { 1999- } \\ \text { 2009(?) } \end{gathered}$	17000	700000	KEK
LHC (!)	$\begin{gathered} \text { pp: } \\ 7000 \times 7000 \end{gathered}$	14000	2009-?	10000	?	CERN
ILC	$\begin{gathered} \mathrm{e}^{+} e^{-:} \\ 500 \times 500 \end{gathered}$	1000	2015(?)-	20000		??

$\mathrm{e}^{+} \mathrm{e}^{-}$collider:

$>$ Collisions of fundamental particles \rightarrow clean events since no further partons involved
> If both beam have the same energy, centre-of-mass system identical to lab system.
$>$ Complete annihilation: kinematics fixed, since initial state exactly known.
$>\Sigma \mathrm{P}_{\mathrm{x}}=0, \Sigma \mathrm{P}_{\mathrm{y}}=0, \Sigma \mathrm{P}_{\mathrm{z}}=0, \Sigma \mathrm{E}=2 \mathrm{E}_{\text {beam }}$ known and conserved, can be used in the reconstruction of the events in the final state \rightarrow missing energy
\rightarrow Excellent machines for precision measurements

pp collider:

$>$ Beam particles are made of partons (gluons and quarks)
> pp collisions are much more complex

Why pp colliders?

$\mathrm{e}^{+} \mathrm{e}^{-}$colliders vs. pp colliders

Main drawback of $\mathrm{e}^{+} \mathrm{e}^{-}$colliders:
$>$ Energy loss due to synchrotron radiation
$>$ Calculable in classical electrodynamics: accelerated charges radiate
$>$ Lost power in ring with radius R and beam energy E :
> Energy loss per turn:

$$
P=\frac{2 e^{2} c}{3 R^{2}}\left(\frac{E}{m c^{2}}\right)^{4}
$$

$$
-\Delta E \approx \frac{2 \pi R}{c} P=\frac{4 \pi e^{2}}{3 R}\left(\frac{E}{m c^{2}}\right)^{4}
$$

$>$ Ratio of energy loss between protons and electrons:

$$
\frac{\Delta E(e)}{\Delta E(p)}=\left(\frac{m_{p}}{m_{e}}\right)^{4} \sim 10^{13}
$$

future colliders:
$>$ pp Ring-accelerator (LHC) $>\mathrm{e}^{+} \mathrm{e}^{-}$Linear Collider (ILC) > Muon Collider ??
> Proton beam can be seen as a beam of quarks and gluons with a wide range of energies
$>$ The proton constituents (partons) carry only a fraction $0<x<1$ of the proton momentum

$$
\begin{array}{lr}
p_{1}=x_{1} p_{A} & \sqrt{\hat{s}}=\sqrt{x_{1} x_{2} s}=x \sqrt{s} \\
p_{2}=x_{2} p_{B} & \text { simplification } \xrightarrow[\left(\text { if } \mathrm{x}_{1}=\mathrm{x}_{2}=\mathrm{x}\right)]{ }
\end{array}
$$

$>$ Moving centre-of-mass system $\left(x_{1} \neq x_{2}\right)$
$>P_{z}$ is not known, since x values of individual event unknown.
> Important variable: transverse momentum: P_{T}
$>$ Reduced centre-of-mass energy

Example:

$>$ LHC: $\sqrt{ } \mathrm{s}=14 \mathrm{TeV}$, TeVatron: $\sqrt{s}=1.9 \mathrm{TeV}$
> To produce a particle with a certain mass m : $x \sqrt{ } \gg m$

	LHC	Tevatron
$100 \mathrm{GeV}:$	$x \sim 0.007$	0.05
$5 \mathrm{TeV}:$	$x \sim 0.36$	--

> At the LHC: for SM processes ($\sim 100 \mathrm{GeV}$) partons with small x needed
$>$ because of proton structure (see next slide): LHC =,,gluon collider"

Structure of the proton

From where do we know the x values?
$>$ The structure of the proton is investigated in Deep Inelastic Scattering

> Highest energies are reached at the ep collider HERA: Scattering of 30 GeV electrons on 900 GeV Protons: Test of the proton structure down to $10^{-18} \mathrm{~m}$
$>$ Structure of the proton: Parton density functions (PDFs)

$>\mathrm{u}$ - and d-quarks at high values of x $>$ Gluons dominate at low values !!
$>$ Knowledge of PDFs very important for LHS predictions

Characteristics of hadron collisions

$>$ Partons in the proton are strongly interacting particles
\rightarrow high cross sections
\rightarrow high rates
> Even possible: several interactions in one bunch crossing
> Rate: $\sim 1 / \mathrm{Q}^{4}$
$>$ Q: transferred 4-momentum
> Most of the events are "soft"
$>$ Only a small fraction contains interesting events with high energies
> In addition the interpretation of a typical hard event is difficult due to QCD:
尚

> In general: events from pp collisions are difficult to analyze

Machine parameters	LHC
Luminosity $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	10^{34}
$\sqrt{ } \mathrm{~s}[\mathrm{TeV}]$	14
BC interval $[\mathrm{ns}]$	$\mathbf{2 5}$
BC rate $[\mathrm{MHz}]$	$\mathbf{4 0}$
Bunches per beam	$2835(3564)$

>Proton-Proton-Collider
>4 experiments: Atlas, CMS , (LHCb, Alice)
$>\sqrt{ } \mathrm{s}=14 \mathrm{TeV}$!! (x7 Tevatron)
$>\mathrm{L}$: 100 times TeVatron

Discovery machine LHC

superconducting dipole magnets

- challenge: magnetic field of 8.33 Tesla
- in total 1232 magnets, each 15 m long
- operation temperature of 1.9 K

LHC is the largest cryogenic system in the world

- Energy stored in the magnet system:
- Energy stored in one (of 8) dipole circuits:
- Energy stored in one beam:
- Energy to heat and melt one kg of copper:

10 GJoule
1.1 GJ (sector) 362 MJ
0.7 MJ

Airbus A380, 560 t
at $700 \mathrm{~km} / \mathrm{h}$
20 t plane

- In September 2008 the first beams circulated in the machine
- Huge media presence at CERN

- Very nice start-up of the accelerator
- E.g RF-capture of the bunches:

First attempts:

Later:

After 3 days of excellent progress with beams

Commissioning with beam interrupted by a series of hardware failures - not related to beams

- two large transformers; 13-18 September 2008 '08
- 19 Sept. ' $\mathbf{0 8}$ at 11:18:36, incident during hardware commissioning of sector $\mathbf{3} / \mathbf{4}$ towards 5.5 TeV/9.3 kA, at 8.7 kA or $\sim 5.2 \mathrm{TeV}$, of the 600 MJ stored energy about $2 / 3$ dissipated into the cold-mass $\quad 1 \mathrm{MJ}$ melts 2.4 kg Cu

some typical numbers and back of envelope estimates:
good splice $\sim 0.3 \mathrm{n} \Omega, \mathrm{I}=12 \mathrm{kA}, \mathrm{U}=\mathrm{R} \mathrm{I}=3.6 \mu \mathrm{~V}$ (now) possible to check $\mathrm{P}=\mathrm{R}^{2}=0.043 \mathrm{~W}$ quench would need locally $>10 \mathrm{~W}$-depending on position-less critical in magnet new QPS triggers at 0.3 mV for $>10 \mathrm{~ms}$
LHC dipole $\mathrm{L}=100 \mathrm{mH}$ stored energy in single dipole $\mathrm{I}^{2} \mathrm{~L} / 2=7.2 \mathrm{MJ} \times 154=1.1 \mathrm{GJ} /$ sector

Current status - August 2009

damage repair

- 39 dipoles and 14 quadrupoles removed - and re-installed. Last magnet back in tunnel on 30/04/2009, electrical connections finished 2nd June

avoid reoccurrence

- Improved diagnostics, measurements of magnet interconnects - splice resistance
- > 50 \% of machine (sectors, 1-2, 3-4, 5-6, 6-7, all standalone magnets) with fast pressure release valves
- Improved anchoring on vacuum barriers around the ring
- Enhanced Quench Protection System
- aperture symmetric quenches
and joints in magnets
- $2 \times$ faster discharge

- Remaining risks minimized by keeping maximum beam energy limited to $3.5-5 \mathrm{TeV}$ for the first run

Restart LHC with beam by mid-November 2009
Go in three steps

1. collisions at injection energy $2 \times 0.45 \mathrm{TeV}=0.9 \mathrm{TeV}$
2. physics run at $2 \times 3.5 \mathrm{TeV}=7 \mathrm{TeV}$
3. physics run at increased energy, max. $2 \times 5 \mathrm{TeV}=10 \mathrm{TeV}$

Towards the end of 2010 before the winter shutdown : 1st run with heavy ions, lead - lead.

22

Total pp- cross section:

Centre-of-mass energy (GeV)

- High centre-of-mass energy
- High cross section
- High design luminosity
- ~23 Interactions / Bunch crossing
- ~1700 Particles / Bunch crossing

$\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow \mathbf{2 e}+2 \mu$

23 soft pp-events

!! with 40 MHz !!

- Detectors and event selection systems at the LHC are designed to cope with these conditions
- The physics aims of the experiments have driven their design
- Quickly here: golden channels at the LHC
- Search for the Higgs Boson:
- Search for New Physics/ SUSY:

γ

Important experimental signatures:

muons, photons, electrons, jets, missing E_{T}

LHC detector design

- Remember the principles of collider detectors:
- Subdetectors arranged in several layers around the interaction point

High particle density \longrightarrow Small particle density
High granularity \longrightarrow Small granularity
High precision $\quad \longrightarrow$ Low precision
Small thickness $\quad \longrightarrow$ Massive material

characteristic features:

- Muon spectrometer with three toroidal magnets ($\mathrm{H} \rightarrow 4 \mu$)
- highly segmented LAr em calorimeter ($\mathrm{H} \rightarrow 4 \mathrm{II}, \mathrm{H} \rightarrow \gamma \mathrm{Y}$) Tile calorimeter for hadronic activity
正

ATLAS toroid

H

\neg Full inner detector is Si-based.
$\neg a d v a n t a g e:$ a single homogeneous system, precise position measurements
\neg disadvantage: a lot of material in front of the calorimeters (particles can shower before), expensive
\neg No longitudinal segmentation in electromagnetic calorimeter
\neg Coil for B field after calorimeter (,large coil solution")
\neg Advantage: less material in front of calorimeter
\neg Disadvantage: expensive, calorimeter restricted in width

data taking at LHC design luminosity

- Up to 23 overlay events: „Pile-up" \rightarrow Detectors with high granularity

	Subdetector	channels	Fragment size [KB]
¢	Pixel	$8.0 * 10^{7}$	60
\leq	SCT	$6.2 * 10^{6}$	110
- ¢	TRT	$3.7 * 10^{5}$	307
而	LAr	$1.8 * 10^{5}$	576
	Tile	$1.0 * 10^{4}$	48
${ }_{0}$	MDT	$3.4 * 10^{5}$	154
\%	CSC	$3.1 * 10^{4}$	10
ユ	RPC	$3.5 * 10^{5}$	12
	TGC	$3.2 * 10^{5}$	6
	L1 Trigger		46

- ATLAS/CMS Event size: $\sim 1.5 \mathrm{MB} \rightarrow$ high demands for data acquisition systems ("DAQ")
- Affordable capacities for storage and reprocessing of data: <300 MB/sec
- Ergo: maximum storage rate restricted to $<200 \mathrm{~Hz}$
- Trigger and Data-acquisition system are crucial at LHC/Hadron-Colliders

physics goals and event rates at the LHC

- only 1 out of 200000 Events can be stored.
- „trigger" selection is crucial for physics goals:
- Selection of rare discovery physics : Higgs, SUSY, Exotics
- Known SM physics (W, Z, top): for calibration, efficiency studies, etc.
- Strategy: "inclusive" selection of
- Leptons: e, μ, т
- Jets
- Photons
- E_{T} miss
\rightarrow „not to miss the unexpected", New Physics !!

Inclusive trigger strategy

- A possible trigger menue:
($\mathrm{L}=10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

Signatur	Rate [Hz]	Physik-goal	
$\mu 20 \mathrm{i}$	40	$\mathrm{ttH}, \mathrm{H} \rightarrow \mathrm{WW}, \mathrm{ZZ}$, top, W‘, Z‘, Z \rightarrow II, LQs	
$2 \mu 10$	10	$\mathrm{H} \rightarrow \mathrm{WW}, \mathrm{ZZ}, \mathrm{Z} \rightarrow \\|$	
e25i,y60i	40,25	$\begin{aligned} & \mathrm{ttH}, \mathrm{H} \rightarrow \mathrm{WW}, \mathrm{yY}, \\ & \text { top, } \mathrm{W}^{*}, \mathrm{Z}^{\prime}, Z \rightarrow \mathrm{I} \text {, } \\ & \mathrm{W} \rightarrow \mathrm{vl} \\ & \text { LQs } \end{aligned}$	
2e15i,2y20i	<1,2	H \rightarrow WW, ZZ, $\mathrm{yy}, \mathrm{Z} \rightarrow \mathrm{II}$	
j400	10	QCD, New Physics	
3j165	10	QCD, New Physics	
4j110	10	QCD, New Physics	
j70+xE70	20	Supersymmetry	
$\mu 10+\mathrm{e} 15 \mathrm{i}$	1	$\begin{aligned} & H \rightarrow W W, Z Z, \\ & t \mathrm{tt} \end{aligned}$	

- Always: trigger thresholds are a compromise:
- Coverage of phase space:
\rightarrow low thresholds
- small trigger rate
\rightarrow high thresholds
- Requirements on trigger systems:
- High rejection rates
- Efficient selection
\rightarrow LHC: multi-layer trigger systems:
- Level-1:
- Fast, coarse calculations
- Custom-made hardware
- Higher trigger levels:
- More time available

D More exact calculations („refinement")

- selection in software, large computer farms

3-Level Trigger System:

1) LVL1 decision based on data from calorimeters and muon trigger chambers; synchronous at 40 MHz ; bunch crossing identification
2) LVL2 uses Regions of Interest (identified by LVL1) data (ca. 2%) with full granularity from all detectors, asynchronous
3) Event Filter has access to full event and can perform more refined event reconstruction

- $\Delta t_{B C}=25 n s$ « possible latency
- But: dead time must be small
- schematic design of Level-1 (ATLAS and CMS):

- During the latency all data must be kept in pipelines.
- Important: small latency
\diamond Fast decision
\diamond Hardware Trigger
- Trigger decision should be based on signals of a single bunch crossing
- But: LHC intervall is small and LHC Detectors are huge
- Flight distance of particles between 2 BCs: 7.5 m

Maschine	$\boldsymbol{\Delta t} \mathbf{t}_{\mathrm{BC}}[\mathbf{n s}]$
LEP	22000
Tevatron 1	3500
Tevatron 2	$396 / 132$
HERA	96
LHC	25

H
(1) needed:

- synchronization of signals with delays
- correct identification of corrects BC (needs good time resolution)

- Dedicated muon chambers with good time resolution:
- Local track search by electronics installed on the detector
- Search for coincidences in different detector layers
- Programmable width of coincidence windows allows coarse determination of the transverse momentum
Beam-Pickup \rightarrow Central Trigger
Szintillators
Roman Pots \rightarrow Processor (CTP)

- Central Trigger Processor calculated Level-1-decision
- „L1Accept"-Signal (L1A): OR from 256 „Trigger Items"
- Distribution of L1A-Signal via optical fibres (TTC system) to start detector readout

- In common:
- Readout-Buffer: decoupling of HLT and L1
- Huge Network Switches for parallel event building (point-to-point).
- Huge, fully programmable and scalable computer farms
- Differences::
- CMS: Event building with full Level1 rate \diamond demanding for network
- ATLAS: L2-Farm used as a preselection step
- Looks only at interesting regions of the event
-Event building with "only" 3 kHz

Summary so far

- Main physics goal of the LHC
- Search for the Higgs
- Search for deviations from the SM, New physics
- pp colliders: discovery machines
- $\mathrm{e}^{+} \mathrm{e}^{-}$colliders: precision measurements
- LHC:
- Highest energy collider
- Highest luminosity collider
- Data taking at the LHC is an unprecedented challenge for detectors and their DAQ and trigger systems
- Triggering:
- Multi-level system used
- First level in custom made hardware
- Higher levels run in huge computer farms at the surface

