Free-Electron Laser

A) Motivation and Introduction

B) Theoretical Approach

C) Experimental Realization / Challenges

Free-Electron Laser

A) Motivation and Introduction

Need for Short Wavelengths Why FELs? Free Electron \leftrightarrow Wave Interaction Amplifier and Oscillator Self Amplifying Spontaneous Emission (SASE) Why SASE? Micro-Bunching **Coherent Radiation**

Need for Short Wavelengths

LYSOZYME MW=19,806

state of the art: structure of biological macromolecule

reconstructed from diffraction pattern of protein crystal:

needs $\approx 10^{15}$ samples crystallized \rightarrow not in life environment the crystal lattice imposes

restrictions on molecular motion

images courtesy Janos Hajdu, slide from Jörg Rossbach

Need for Short Wavelengths - 2

resolution does not depend on sample quality needs very high radiation power @ $\lambda \approx 1$ Å can see dynamics if pulse length < 100 fs

we need a radiation source with • very high peak and average power

- wavelengths down to atomic scale $\lambda \sim 1$ Å
- spatially coherent
- monochromatic
- fast tunability in wavelength & timing
- sub-picosecond pulse length

courtesy Janos Hajdu

SINGLE

Why FELs?

principle of a quantum laser

problem & solution: active medium \rightarrow free electron – EM wave interaction

Free Electron \rightarrow Wave Interaction

Free Electron ← Wave Interaction

change of electron energy

$$\frac{dW}{dt} = -e\mathbf{v}(t) \cdot \mathbf{E}(\mathbf{r}(t), t)$$

undulator trajectory

Amplifier and Oscillator

instability, driven by noise, growth until amplifier saturates

• amplified noise:

Self Amplifying Spontaneous Emission (SASE)

- uniform random distribution of particles at entrance
- incoherent emission of EM waves (noise, wide bandwidth)
- amplification (\rightarrow resonant wavelength, micro-bunching)
- saturation, full micro modulation, coherent radiation

Why SASE?

oscillator needs resonator

but there are no mirrors for wavelengths < 100 nm

• alternative: seed laser + harmonic generation + amplifier

Micro-Bunching

- longitudinal motion is trivial to 1st order, **but**
- micro-bunching is a 2^{nd} order effect \rightarrow theory
- transverse bunch structure is much larger than longitudinal sub-structure
 → 1d theory with plane waves

Coherent Radiation

electron in undulator \rightarrow plane wave in far field

incoherent superposition of plane waves:

coherent superposition of plane waves:

 $\varphi_2 \quad \varphi_3$

 φ_1

field amplitude:
$$E_{\Sigma} = \left| \sum_{\nu=1}^{N} \exp(i\varphi_{\nu}) \right| \approx N$$

radiated power: $P_{\Sigma} \propto E_{\Sigma}^{2} \approx N^{2}$

Coherent Radiation - 2

Free-Electron Laser

B) Theoretical Approach

Resonance Condition

Particle Energy and Ponderomotive Phase

Longitudinal Equation of Motion

Low Gain Theory

FEL Gain

Micro-Bunching

High Gain Theory

Continuous Phase Space

Gain Length

Resonance Condition

- EM wave is faster than electron, but
- periodic interaction if wave-electron slippage is one wavelength per undulator period

 $\frac{\lambda_u + \lambda_l}{c} = \frac{S_u}{v}$

 S_u trajectory length of one undulator period (S_u and v depend on γ)

otherwise energy exchange cancels over many periods

resonance condition

$$\lambda_l = c \frac{S_u}{v} - \lambda_u \approx \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

- γ Lorentz factor (~ energy)
- K undulator parameter (~ 1)

Particle Energy and Ponderomotive Phase

resonant energy

• resonance condition:
$$\frac{\lambda_u + \lambda_l}{c} = \frac{S_u(\gamma_{res})}{v(\gamma_{res})}$$

• if resonance condition fulfilled: $\left\langle \frac{dW}{dt} \right\rangle \propto -\hat{E} \cos \psi$ with ψ = const ponderomotive phase

 $\psi = 0 \rightarrow$ kinetic energy transfer EM \rightarrow wave "laser" $\psi = \pi \rightarrow$ transfer EM wave \rightarrow kinetic energy "accelerator"

• if resonance condition is not fullfilled: $\gamma \neq \gamma_{res}$

$$\frac{\lambda_u + \lambda_l - \zeta}{c} = \frac{S_u(\gamma)}{v(\gamma)}$$

particle slips in one period by $\lambda_l - \zeta$

change of ponderomotive phase
$$\frac{\Delta \psi}{T_u} = k_l \zeta$$
 with $T_u = S_u / v$

Longitudinal Equation of Motion (in average)

longitudinal phase space

$$\frac{d\psi}{dt} \propto \gamma - \gamma_{\rm res} \qquad \qquad \frac{d\gamma}{dt} \propto -\hat{E}\cos\psi$$

longitudinal position $\rightarrow \psi$ longitudinal momentum $\rightarrow \gamma$

equations are analog to mathematical pendulum

• trajectories in phase space

Low Gain Theory

• neglect change of field amplitude

$$\frac{d\psi}{dt} \propto \gamma - \gamma_{\rm res} \qquad \qquad \frac{d\gamma}{dt} \propto -\hat{E}\cos\psi$$

• indirect gain calculation

$$G = \frac{\text{gain of field energy}}{\text{initial field energy}} = \frac{\text{loss of particle energy}}{\text{initial field energy}} = \frac{W_{\Sigma}(\text{in}) - W_{\Sigma}(\text{out})}{\text{initial field energy}}$$

FEL Gain

 \bullet analytical analysis \rightarrow

Micro-Bunching

Fourier analysis of longitudinal particles positions
 → amplitude of micro modulation

$$\hat{I} \propto \sum \exp(-i\psi_{\nu})$$

(fundamental mode)

High Gain Theory

- logitudinal position in undulator $z = \overline{v}t \approx ct$
- set of equations:

particles
$$\frac{d\psi}{dz} \propto \gamma - \gamma_{res} \qquad \frac{d\gamma}{dz} \propto -\text{Re}\left\{\hat{E}(z)\exp^{i\psi}\right\}$$
amplitude (and phase) of EM wave
$$\hat{I} \propto \sum \exp(-i\psi_{\nu})$$
amplitude
$$\frac{d}{dz}\hat{E} \propto K\hat{I}$$
 (from Maxwell equations)

this set of equations + field equations can be solved numerically

• FEL codes include transverse motion and 3D EM field calculation

Continuous Phase Space

• phase space distribution many point particles $\psi_n, \gamma_n \rightarrow \text{continuous density distribution } F(z, \psi, \eta)$

charge density $\lambda(z,\psi) = \int d\eta \times F(z,\psi,\eta)$ bunching $\hat{I} \propto \int d\psi \times \lambda(z,\psi) e^{-i\psi}$

• Vlasov equation

$$\frac{dF}{dz} = \frac{\partial F}{\partial z} + \frac{\partial F}{\partial \psi} \frac{d\psi}{dz} + \frac{\partial F}{\partial \eta} \frac{d\eta}{dz} = 0$$

$$\frac{d\psi}{dz} \propto \gamma - \gamma_{\rm res} \qquad \frac{d\eta}{dz} \propto -\operatorname{Re}\left\{\hat{E}(z)\exp^{i\psi}\right\}$$

Gain Length

Free-Electron Laser

C) Experimental Realization / Challenges

Linac Coherent Light Source - LCLS

Scales

Challenges

RF Gun

Bunch Compression

European X-FEL

Table Top FEL

Linac Coherent Light Source- LCLS

SLAC mid-April 2009 – first lasing at 1.5 Å

Scales

photon wavelength	$\lambda_l \propto 10^{-10} \mathrm{m} \propto \lambda_u / \gamma^2$	2
cooperation length	$L_l = N_c \lambda_l \propto 10^{-8} \mathrm{m}$	about N_c micro-bunches in cooperation
bunch length	$L_b = cq/I \propto 10^{-5} \text{ m}$	
bunch width	$\sigma_{_{W}} \propto \sqrt{\lambda_{_{l}}L_{_{g}}} \propto 10^{-5}\mathrm{m}$	(overlap electron-beam EM wave)
undulator period	$\lambda_{\mu} \propto 10^{-2} \mathrm{m}$	
power gain length	$L_g = N_c \lambda_u \approx 110 \mathrm{m}$	$\propto \sqrt[3]{\gamma^3 \lambda_u \sigma_w^2/I}$
Rayleigh length	$L_R \approx L_g$	describes widening of EM wave
saturation length	$L_s \approx 10L_g \dots 20L_g < L_u$	
undulator length	$L \propto 100 \mathrm{m}$	
total length	$L \propto 10^3 \mathrm{m}$	

Challenges

$$\lambda_l = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

$$L_g = \frac{1}{\sqrt{3}} \left(\frac{4mc}{\mu e} \frac{\gamma^3 \lambda_u}{K^2} \frac{\sigma_r^2}{I} \right)^{1/3}$$

- $\lambda_l \rightarrow \text{Å}$
- Energy \rightarrow 10 .. 20 GeV
- gain length $L_g <\sim 10 \text{ m}$
- high peak current >~ kA
- transverse beam size $\sigma_r \propto 10 \ \mu m$
- energy spread
- overlap electron-photon beam

(undulator parameter $K \propto 1$)

 $\sigma_r^2 \propto \lambda_l L_g$

transverse: generate low emittance beam preservation of emittance longitudinal: compression acceleration diagnostic and steering undulator alignment $\frac{\sigma_r^2}{I} = \frac{\sigma_r^2 L_b}{Q^c}$ volume $\frac{\sigma_r^2}{Q^c}$ bunch charge

space charge forces:

$$E_{sq} \propto \frac{1}{\gamma^2} \frac{q}{\sigma_r^2}$$

RF Gun

typical parameters of FLASH & European XFEL:

$$q \propto 1 \,\mathrm{nC}$$
 $E \propto 5 \,\mathrm{MeV}$ $I \propto 50 \,\mathrm{A}$
 $\gamma \propto 10$

longitudinal compression $1 \rightarrow 0.01$ needed !

Magnetic Bunch Compression

 $\gamma >>1 \rightarrow$ velocity differences are too small for effective compression magnetic compression: path length depends on energy

beam dynamics with space charge and CSR effects

Magnetic Bunch Compression - 2

European X-FEL

superconducting cavity, 1.3 GHz $E_{\rm acc} \rightarrow$ 40 MeV/m 22.5 MeV/m are needed for 17.5 GeV & 1Å

FLASH tunnel: cryo module

European X-FEL -2

	LCLS	SCSS	European XFEL	
Abbreviation for	Linac Coherent Light Source	Spring-8 Compact SASE Source	European X-Ray Free- Electron Laser	
Location	California, USA	Japan	Germany	
Start of commissioning	2009	2010	2014	
Accelerator technology	normal conducting	normal conducting	superconducting	
Number of light flashes per second	120	60	30 000 multi bunch	opera
Minimum wavelength of the laser light	0.15 nanometres	0.1 nanometres	0.1 nanometres	
Maximum electron energy	14.3 billion electron volts (14.3 GeV)	6-8 billion electron volts (6-8 GeV)	17.5 billion electron volts (17.5 GeV)	
Length of the facility	3 Kilometer	750 Meter	3.4 Kilometer	
Number of undulators (magnet structures for light generation)	1	3	5	
Number of experiment stations	3-5	4	10	
Peak brilliance [photons / s / mm ² / mrad ² / 0.1% bandwidth]	8.5·10 ³²	5·10 ³³	5·10 ³³	

beamlines

	SASE 1	SASE 2	SASE 3	U1	U2
wavelengths	0.1 nm	0.1-0.4 nm	0.4-1.6 nm	0.01-0.06 nm	0.01-0.06 nm
laserlike/coherent	yes	yes	yes	no	no
undulator length	201.3 m	256.2 m	128.1 m	61 m	61 m
number of segments	33	42	21	10	10

Table Top FEL

Laser-Pasma accelerators: "bubble acceleration"

