

Klaus Rith University of Erlangen-Nürnberg & DESY

- HERMES
- Determination of $\Delta\Sigma$
- The quark helicity distributions $\Delta q(x)$
- The gluon helicity distribution $\Delta g(x)$
- Transverse spin physics: transversity δq(x), Collins FF, Sivers DF
- Quark orbital angular momenta L_q, GPDs
 - Summary and outlook

Introduction and Motivation

Spin: extremely important quantity in quantum physics with properties of angular momentum

Spin-1/2 particles (Fermions):

fundamental constituents [quarks, leptons (e, μ , τ , neutrinos), proton, neutron,...]

Spin-1/2 responsible for stability of matter (Pauli-principle):

"No two Spin-1/2 particles can occupy a state where all quantum numbers are identical"

Magnetic moment
$$\vec{\mu} = g(e/2M)\vec{s}$$

Pointlike fundamental fermions: $s = \frac{1}{2}$, g=2, $\langle \mu_F \rangle = (e_F/2m_F)\hbar$

Proton p: $s = \frac{1}{2}, g^{p} = 5,46$

Neutron n:
$$s = \frac{1}{2}, g^n = -3,82$$

 $g^{p, n} \neq 2, \quad <\mu^{n} > \neq 0$

p, **n** are <u>not</u> fundamental and pointlike $\sqrt{\langle r^2 \rangle} \cong 0,84 \cdot 10^{-15}$ m

p, n are composite systems

hermes Magn. moment: constituent quark model

$$|p>=|uud>, e_u = 2/3$$

 $|n>=|ddu>, e_d = -1/3$

$$\chi_{p}(J=\frac{1}{2},m_{J}=\frac{1}{2}) = \sqrt{2/3}\chi_{uu}(1,1)\chi_{d}(\frac{1}{2},-\frac{1}{2}) - \sqrt{1/3}\chi_{uu}(1,0)\chi_{d}(\frac{1}{2},\frac{1}{2})$$

$$|p^{\uparrow}\rangle = \{2|\underline{u^{\uparrow}u^{\uparrow}d^{\downarrow}}\rangle - |\underline{u^{\uparrow}u^{\downarrow}d^{\uparrow}}\rangle - |\underline{u^{\downarrow}u^{\uparrow}d^{\uparrow}}\rangle + 2|\underline{u^{\uparrow}d^{\downarrow}u^{\uparrow}}\rangle - \dots + 2|\underline{d^{\downarrow}u^{\uparrow}u^{\uparrow}}\rangle - \dots \}/\sqrt{18}$$

$$\langle \mu^{\mathbf{p}} \rangle = \langle \mathbf{p}^{\uparrow} | \overrightarrow{\mu} | \mathbf{p}^{\uparrow} \rangle = 1/3 \{ 4 \langle \mu^{\mathbf{u}} \rangle - \langle \mu^{\mathbf{d}} \rangle \} ;$$

$$<\mu^{n}> = 1/3\{4<\mu^{d}> - <\mu^{u}>\};$$

 $<\mu^{n}>/<\mu^{p}> = -2/3 \cong -1.91/2.73$ with $m_{u}=m_{d}=m_{q}\cong M_{p}/2.73$

Polarised Deep-Inelastic lepton (e,μ) nucleon Scattering (DIS)

Polarised Deep-Inelastic lepton (e,μ) nucleon Scattering (DIS)

Polarised Deep-Inelastic lepton (e,μ) nucleon Scattering (DIS)

Polarized deep-inelastic scattering

$$Q^2 = -q^2 = -(k - k')^2$$
, $v = Pq/M \stackrel{L.S}{=} E - E'$,

 $x = Q^2/(2Pq)$ = fraction of nucleon's longitudinal momentum carried by struck quark

q(x) = quark number density (quark momentum distribution)

Quark helicity distributions $\Delta q(x)$

More precisely: "helicity weighted momentum distributions"

Quark helicity distributions $\Delta q(x)$

ons $\Delta q(x)$

More precisely: "helicity weighted momentum distributions"

•
$$\Gamma_1 := \int_{1}^{1} g_1(x) dx;$$
 • 9 $\Gamma_1^{p,(n)} = 4(1)\Delta u + 1(4)\Delta d + \Delta s$

$$\Delta \Sigma \stackrel{\overline{MS}}{=} a_0 = \frac{1}{\Delta C_S} \left[\frac{9\Gamma_1^d}{(1 - \frac{3}{2}\omega_D)} - \frac{1}{4} a_8 \Delta C_{NS} \right]$$

$$\omega_D = 0.05 \pm 0.05$$
D-state probability in deuteron wave function

DESY - Summer Student Lectures 25/08/2008

Myon beam: 100, 120 and 200 GeV

$$\pi^+
ightarrow \mu^+ \,
u_\mu$$
 , $\pi^-
ightarrow \mu^- \, \overline{
u}_\mu$

Polarised NH₃-Target, T = 0,5 K, B = 2.5 T, Fraction of polarisable protons: $f \approx 3/17$

The EMC experiment at CERN

DESY - Summer Student Lectures 25/08/2008

Peter Berglund Jukka Kyynäräinen

The EMC result for $g_1^p(x)$

5th most cited paper in experimental accelerator based particle physics

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma$$
 (Quark spins)

+ ΔG (Gluon spins)

(Orbital angular momenta)

HERA MEasurement of Nucleon Spin

<u>Idea (1987):</u>

Use

- polarized electron beam of HERA
- gas targets with high polarisation and low dilution
- storage cell target internal to HERA e-ring

Conditions (1988) for approval (1992/93)

High flux of highly polarised atoms from polarized sources

Performance exceeds design values by about a factor of 2

Experimental demonstration of storage cell technique

Verified by pioneer experiments at Heidelberg TSR and Novosibirsk e-storage ring

ŀ

Experimental demonstration of high longitudinal electron beam polarisation

<u>Mechanism</u>: Spin flip by emission of synchrotron radiation

 \approx **1** / 10¹¹ emissions

<u>Degree of polarisation</u>: depends critically on machine energy and magnet alignement

Longitudinal polarisation: requires spin rotators

6-7/91: first attempt

- 11/91: $P_T \approx 8-10$ % (realignment of several magnets)
- 4-7/92: P_T ≈ 15-20 % (normal HERA running)
- 9/92: P_T ≈ 60 % (dedicated running) → approval
 - Winter 93/94: installation of spin rotators

5/94: P_L ≈ 60 %

Electron beam polarisation

Electron beam polarisation

Nov. 91

Elektronen besitzen die Eigenschaft kleiner Kreisel, sie haben einen "Eigendrehimpuls" oder "Spin". In der Teilchenphysik gibt es einige Fragestellungen, die nur mit solchen "polarisierten" Elektronen untersucht werden können.

Electron beam polarisation

Installation of Spinrotators: winter 1993/94

Electron beam:

 $E = 27.6 \text{ GeV}, I_e < 50 \text{ mA}$

DESY - Summer Student Lectures 25/08/2008

The polarised atomic gas target

Target polarisation: $P_T \approx 0.85$

The polarised atomic gas target

Target polarisation: $P_T \approx 0.85$

HERMES Spectrometer

HERMES spectrometer

HERMES spectrometer - RICH

hadron separation

1995-2000: Longitudinal target polarisation (1995: ³He, 1996-97 H, 1998-2000 D)

+ unpolarised targets (H2, D2, 4He, N2, 20Ne, 84Kr, 131Xe)

2002-2005: Transverse target polarisation (H[†])

+ unpolarised targets

2006-30/06/2007: Recoil detector (H_2, D_2) exclusive reactions

Longitudinal target polarisation (1995-2000)

Transverse target polarisation (2002-2005)

Determination of $\Delta\Sigma$

The Asymmetry $A_1 \cong g_1/F_1$

P. R. D 75 (2007) 012007

Klaus Rith

DESY - Summer Student Lectures 25/08/2008

P. R. D 75 (2007) 012007 g **5**0.06 0 0 р 0.05 0 d -0.5 $\langle Q^2 \rangle < 1 \text{ GeV}^2 \langle Q^2 \rangle > 1 \text{ GeV}^2$ 0.04 gⁿ₁ from p,d: HERMES (Q²< 1 GeV²) HERMES (Q²> 1 GeV²) -1 0 0.03 **HERMES** E155 -1.5 E143 SMC 0.02 0 * 0.01 g 0 0 -0.01 -0.5 g₁ⁿ from ³He: -0.02È HERMES -1 -2 -1 JLAB 10 10 Χ E142 -1.5 E154 ⟨Q²⟩(GeV²) 10**⊧** ⟨Q²⟩ (GeV²) ₁ 0 0 0 0 0 0 0 0 0 0 Q -2 10⁻¹ -2 -1 10 10 X 1 10 **x**¹

Klaus Rith

DESY - Summer Student Lectures 25/08/2008

Most precise determination of $\Delta\Sigma$

Klaus Rith

Quark helicity distributions $\Delta q(x)$

Measure hadron asymmetries

$$A_{1}^{h}(\mathbf{X},\mathbf{Z}) = \frac{\sum_{q} e_{q}^{2} \Delta q(\mathbf{x}) D_{q}^{h}(\mathbf{z})}{\sum_{q} e_{q}^{2} q(\mathbf{x}) D_{q}^{h}(\mathbf{z})}$$

Targets: \vec{H} , \vec{D} ; $h = \pi^{\pm}$, K^{\pm} , p (identified with RICH)

Klaus Rith

DESY - Summer Student Lectures 25/08/2008

In leading order QCD:

Statistics sufficient for 5-parameter-fit $\vec{Q}(x) = (\Delta u(x)/u(x), \Delta d(x)/d(x), \Delta \bar{u}(x)/\bar{u}(x), \Delta \bar{d}(x)/\bar{d}(x), \Delta s(x)/s(x))$

(Probability that observed hadron originates from quark of type q)

Quark helicity distributions

PRL 92 (2004) 012005, PRD 71 (2005) 012003

- u quarks: large positive polarisation
- d quarks: negative polarisation $\Delta d(x) \cong -0.4 \Delta u(x)$ (!?)
- Sea quarks (ū, d, s): polarisation compatible with 0.

Gluon helicity distribution $\Delta g(x)$

Data: Deuteron target

- Single hadron with high transverse momentum
- No scattered electron in acceptance
- MC: PYTHIA 6.2
 - Simulation of total ep cross section
 - Determination of relative contributions R of sub-processes
 - Vector mesons
 - anomalous ($\gamma^{\star} \rightarrow \overline{q}q$) processes
 - direct photon processes (PGF, QCDC)
 - LO DIS ($\gamma^* q \rightarrow q$)

and their asymmetries

DESY - Summer Student Lectures 25/08/2008

sub-process contributions R

sub-process asymmetries (with GRSV std.)

- \bullet VMD decreases with $\, p_{T} \,$
- $\boldsymbol{\cdot}$ DIS increases with $\,\boldsymbol{p}_{T}$
- Hard QCD2->2(q) small contrib.
- Signal processes PGF&QCD2->2(g) are about the same size
- DIS increases with $p_T(x)$ positiv
- |PGF| increases with p_T negativ
- Alle others flat and small, but:
- important for background-asymmetry!

hermes

Direct determination of $\Delta g/g$

 $<\mu^2>=1.35 \text{ GeV}^2$

 $\Delta g/g(x, \mu^2) = 0.071 \pm 0.034^{(stat)} \pm 0.010^{(sys-exp)} + 0.127_{-0.105}^{+0.127}$ (sys-model)

Origin of nucleon spin still unclear: Where do the missing 65% come from? X. Ji: ,Dark Spin'

Is there a substantial contribution of Ag and/or Aq at very low x?

Transverse spin physics

Transversity $\delta q(x)$

For a complete description of momentum and spin distribution of the nucleon at leading-twist: 3 distribution functions (DF)

DESY - Summer Student Lectures 25/08/2008

Transversity $\delta q(x)$

For a complete description of momentum and spin distribution of the nucleon at leading-twist: 3 distribution functions (DF)

Transversity $\delta q(x)$

For a complete description of momentum and spin distribution of the nucleon at leading-twist: 3 distribution functions (DF)

The transversity distribution

 $\Delta q(x,Q^2)$

Helicity basis: $|+\rangle$, $|-\rangle$

 $\delta q(x,Q^2)$

Transverse Spin basis: $|\uparrow\rangle$, $|\downarrow\rangle$

δ**q is chiral-odd**

 δq in helicity basis:

associated with helicity flip of $|\uparrow,\downarrow\rangle = \frac{1}{\sqrt{2}}(|+\rangle \pm i |-\rangle)$ struck quark

Hard EM and strong interactions cannot flip the chirality of the probed quark

 δq is not accessible in inclusive DIS

How to measure transversity

Need another chiral-odd object! \Rightarrow Semi-Inclusive DIS

DESY - Summer Student Lectures 25/08/2008

The Collins fragmentation function

Collins FF $H_1^{\perp}(z,k_T^2)$ correlates transverse spin of fragmenting quark and transverse momentum $P_{h\perp}$ of produced hadron h

Chiral - odd & naïve T - odd

produces left-right asymmetry in the direction of the outgoing hadron

The Sivers distribution function f_{1T}

Describes correlation between intrinsic quark p_T and transverse nucleon spin

 $f_{1T}^{\perp q}(p_T^2)$ describes probability to find an unpolarised quark with transverse momentum in a transversely polarised nucleon

Chiral - even & naïve T - odd

requires a quark rescattering via soft gluon exchange (gauge link) (Brodsky, Hwang, Schmidt)

Non-zero Sivers DF requires non-vanishing orbital angular momentum in the nucleon wave function

Klaus Rith

DESY - Summer Student Lectures 25/08/2008

- Attractive FSI deflects quark inwards
- Left-right distribution asymmetry is converted into right-left momentum asymmetry
- Impact parameter formalism (M. Burkardt hep-ph/030926)
 - Orbital angular momentum of quarks
 - Virtual photon sees different × for different b
 - Quark distributions depend on b

The Sivers effect

- Attractive FSI deflects quark inwards
- Left-right distribution asymmetry is converted into right-left momentum asymmetry

- Orbital angular momentum of quarks
 - Virtual photon sees different × for different b
- Quark distributions depend on b

Angular distributions in SIDIS

 $\boldsymbol{\varphi}$: angle between lepton scattering plane and hadron production plane

 ϕ_S : angle between lepton scattering plane and transverse spin component S_{\perp} of target nucleon

Azimuthal angular distributions

$2(\sin(\phi + \phi_S))^h_{UT} \sim \delta q(x) \cdot H_1^{\perp q}(z)$

M. Diefenthaler @ DIS07, hep-ex 0707.0222

(also: A. Airapetian et al, P. R. L. 94 (2005) 012002)

First measurement of nonzero Collins effect

Both Collins fragmentation function and transversity distribution function are sizeable

Surprisingly large π^- asymmetry

Possible source: large contribution (with opposite sign) from unfavored fragmentation,

i.e. $U \rightarrow \pi^-$

 $H_{1,disf} \approx - H$

Collins amplitudes for $\pi^{+/-}$ und K^{+/-}

Fits of HERMES (p), COMPASS (d) and BELLE data by Anselmino et al. (from A. Prokudin @ DIS2008)

Fits of HERMES (p), COMPASS (d) and BELLE data by Anselmino et al. (from A. Prokudin @ DIS2008)

First observation of non-zero Sivers distribution function in DIS

Experimental evidence for orbital angular momentum L_q of quarks

But: Quantitative contribution of L_q to nucleon spin still unclear

Fits of HERMES (p) and COMPASS (d) data by Anselmino et al. (from S. Melis @ DIS2008)

Fits of HERMES (p) and COMPASS (d) data by Anselmino et al. (from S. Melis @ DIS2008)

DESY - Summer Student Lectures 25/08/2008

Quark orbital angular momentum Lq

Tool: Generalised Parton Distributions

PDFs:

GPDs:

Generalised description in 2+1 dimensions

Determination of La

Ji sum rule:

$$J_q = 1/2\Delta\Sigma + L_q = \lim_{t \to 0} \int_{-1}^{1} dx \times [H(x,\zeta,t) + E(x,\zeta,t)]$$

 $H(x,\zeta,t)$, $E(x,\zeta,t)$: Generalised Parton Distributions (GPDs) Access: <u>exclusive processes</u>

Final state sensitive to different GPDs

Vector mesons (ρ, ω, ϕ) H, E Pseudoscalar mesons (π, η) \widetilde{H} , \widetilde{E} DVCS (γ) H, E, \widetilde{H} , \widetilde{E}

DESY - Summer Student Lectures 25/08/2008

Determination of L_a

Determination of L_a

Determination of La

Determination of La

A. Airapetian et al., JHEP 0806 (2008) 66

Program until June 30th 2007:

Detailed study of exclusive processes with Recoil-Detector:

Summer students: Hanna, Cory, Falk

Nucleon Spin Structure & HERMES

Further results - Outlook

<u>Many more results on various subjects</u>: at present >50 publications with in average 60 citations each

Examples:

- hadron multiplicities and fragmentation functions
- **SSA** for inclusive and exclusive π production
- vector meson production
- DSA for exclusive VM production
- DIS on nuclear targets
- Nuclear attenuation of coherent and incoherent p's (coherence length, colour transparency)
- Iongitudinal and transverse A polarisation

Still much more to come !!