Detectors for Particle Physics

Drift tubes Muon detectors MWPC, CSC, RPC, TRT, TPC, Cherenkov

Lecture 2:

Outline

- Lecture 1:
 - Collider detectors
 - Charged particles in a magnetic field
 - Silicon detectors
- Lecture 2:
 - Drift tubes
 - Muon systems
 - MWPCs, CSCs, RPCs, TRTs, TPCs, Cherenkovs
- Lecture 3:
 - Electromagnetic showers and calorimeters
 - Photon detectors
 - Hadronics showers and calorimeters
 - Particle flow technique
- Discussion session:
 - Your questions, please

Principle of drift detectors

- Track ionises gas atoms
- electrons drift towards anode: v_D
- Amplify
- Measure drift time: $\Delta t = t_1 t_0$
- Reconstruct radius: $\Delta s = v_D \Delta t$.
- vD depends on gas, voltage, pressure, temperature, field: need calibration.

DESY summer students lectures 5.8.2008

Drift velocity

- Drift velocity depends on electric field, pressure, gas, temperature, magnetic field.
- Want stable operation point: just above maximum.
- tradeoff:
 - slower gas = higher resolution.
 - faster gas better in a high-rate environment.

ATLAS drift tubes

DESY summer students lectures 5.8.2008

D. Pitzl, DESY

time synchronization:

CMS drift cells

Extra electrode for field shaping: more uniform drift. Left/right ambiguity remains.

drift velocity calibration:

resolution = $\mathbf{v}_{drift} \times \langle \mathbf{\sigma}_{Tmax} \rangle$

DESY summer students lectures 5.8.2008

Choice of Gas 1: ionization and drift

- Drifting electrons should not be trapped:
 - Use noble gas, e.g. Ar.
- Want large primary ionzation yield:
 - Ar gives 25 ions/cm at normal T, p for a minimm ionizing particle.
- The primary electrons may ionize further atoms:
 - $\times 3 \text{ or } \times 4 \text{ increase.}$
- Xe and/or higher pressure are even better (and more expensive).

Signal amplification near the wire

For cylindrical geometry:

 $E(r) \propto \frac{1}{r}$ and $V(r) \propto \ln \frac{r}{a}$

- the primary electrons drift towards the positive anode
- due to 1/r dependence the electric field close to very thin wires reaches values of E > kV/cm
- → in between collisions with atoms electrons gain enough energy to ionize further gas molecules
- $\cdot \Rightarrow \text{exponential}$ increase in number of electron-ion pairs very close (few μm) to the wire

Amplification by 10⁴ possible

The Avalanche

- Amplification depends on:
 - Anode voltage
 - Wire radius
 - Gas composition
 - Pressure
 - temperature

Receeding ion cloud induces signal on the wire

Choice of Gas 2: high gain, stable operation

- Want large gain at low voltage:
 - ► Ar is monoatomic gas
 - No vibrational or rotational modes, only excitation and ionization.
- Excited Ar atoms may emit UV photons (11.6 eV):
 - UV photons may reach the cathode and produce photoelectrons.
 - Photoelectrons drift back towards the wire and may start a new avalanche
 - Continous discharge!
- Need 'quencher' molecules that absorb UV photons without creating photoelectrons:
 - $\blacktriangleright CH_4, C_2H_6, CO_2, \dots$

Choice of Gas 3: prevent ageing

deposits on the wire:

'whiskers':

- Impurities in the gas (or in the chamber) may form deposits on the wire and reduce the gain.
- 'Whiskers' lead to HV instabilities.
- Prevention:
 - Build chamber in a clean room.
 - ► Use clean gas.
 - ► Add ~1% alcohol, water, or oxygen.

ATLAS Drift Tube Chambers

- 6 drift tube layers, arranged in 2 multilayers glued to a spacer frame
- length: 1 6 m, width: 1 2 m
- optical system to monitor chamber deformations
- gas: Ar:CO₂ (93:7) to prevent aging, 3 bar
- chamber resolution: 50 μm
 - → single tube resolution: 100 µm
 - → required wire position accuracy: 20 µm

D. Pitzl, DESY

Assembly of MDT Chambers (Frascati, IT)

ATLAS muon system

ATLAS muon spectrometer

- Excellent stand-alone capabilities and coverage in open geometry
- Complicated geometry and field configuration (large fluctuations in acceptance and performance over full potential $\eta \times \varphi$ coverage ($|\eta| < 2.7$)

ATLAS Barrel muon system in the toroid field

Detailed field map needed!

CMS muon system

CMS muon spectrometer

• Superior combined momentum resolution in the central region with silicon tracker.

• Limited stand-alone resolution and trigger (at very high luminosities) due to multiple scattering in iron

• Degraded overall resolution in the forward regions ($|\eta| > 2.0$) where solenoid bending power becomes insufficient

Pseudo-rapidity

$$p = \sqrt{p_x^2 + p_y^2 + p_z^2}$$

$$\varphi = \arctan(p_y/p_x) \in [-\pi, \pi]$$

$$\theta = \arccos(p_z/p) \in [0, \pi]$$

pseudo-rapidity: $\eta = -\ln(\tan(\theta/2))$

(soft hadron production: $dn/d\eta \approx const$. 'central rapidity plateau')

rapidity:
$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z}\right)$$

 $y \approx \eta$ for $p \gg m$

CMS Muon chambers

ATLAS and CMS: muon momentum resolution

low-p_T muons

Requirements for muon identification and reconstruction at low p_{T}

- Identify track stub in first layer of muon system
- Check for minimum ionising signals in last layers of hadron calorimeter
- Match as precisely as feasible (within limitations due to large MS and energy loss in calorimetry) measured track in inner detector with track stub in muon system

Multi-wire proportional chambers MWPCs

string many anode wires between cathode planes:

Particle

CMS Cathode Strip Chambers

6000 m² 450k channels

468 chambers

ATLAS muon chamber wheel

Ø25m

D. Pitzl, DESY

DESY summer students lectures 5.8.2008

RPC Resistive plate chambers

Surface charging of electrodes by current flow through resistive plates

a particles causes local discharge which induces signals in the readout strips.

Transition Radiation

• Relativistic particles passing through an interface radiate.

D. Pitzl, DESY

e/π separation using TRT

pion reduction by factor 75 for 90% electron efficiency

ATLAS Transition Radiation Tracker

ATLAS inner tracking: silicon and straws

red = tracks found in the silicon layers.

white = hits in
the straw tubes.
36 hits/track:
good for pattern
recognition.

Time Projection Chamber in a solenoid field

D. Pitzl, DESY

ALICE TPC

TPC

Energy loss of charged particles in matter

 Charged particles loose energy in collisions with electrons in matter: Bethe-Bloch:

dE/dx Data

<dE/dx> averaged over many samplings: $\sigma \sim \sqrt{N}$.

good for particle identification at low momenta.

Cerenkov Radiation

Cherenkov-Effect:

A charged particle moving faster than the speed of light in a medium v > c/n emits Cherenkov radiation.

Emission of a coherent wave front: $\cos\theta_{c} = 1/(\beta n)$

LHCb Cerenkov Detector

The Cherenkov cone is imaged into a ring at a position-sensitive photon detector. Ring radius -> Cherenkov angle -> particle velocity. Together with momentum measurement: determine particle mass. Good for π - K- p separation.

Hybrid photon detector HPD

- A Cherenkov photon reaches the multialkali-coated quartz window of an HPD.
- A photoelectron is released, and is accelerated toward the silicon array by a 20kV potential.
- The photoelectron creates around 5,000 electron-hole pairs in the silicon.
- The silicon array has 1024 pixels for position measurement.
- Readout is by a bump-bonded amplifier and discriminator chip.

Summary

- Drift detectors
- muons systems
- MWPC, CSC, RPC
- transition radiation
- TPCs
- Bethe-Bloch dE/dx
- Cherenkov and HPDs

