DESY Summer Student Program 26./27. Aug 2008 Hamburg

Physics in pp collisions LHC, machine, detectors, physics

Johannes Haller (Universität Hamburg)

Yesterday: Motivation/Introduction: open questions in particle physics

- Hadron Collider Physics
- Detectors: ATLAS and CMS
- Today:
 Physics: Existing results and prospects at the LHC:
 - W and Z production at hadron colliders
 - Top physics
 - Search for the Standard Model Higgs boson
 - Search for physics beyond the Standard Model:
 - SUSY
 - GUT \rightarrow Leptoquarks

Overview of physics process in pp collisions

- At the LHC and in pp collisions in general a wide range of physics processes is accessible
 - High centre-of-mass energy and high luminosity allows to explore completely new regime
 - Discoveries expected in this regime
- Due to huge QCD background, leptons (electron, muons) must be used to select electroweak processes and events of New Physics
- Note: at the LHC very high rates are expected for
 - Jets (of course)
 - W/Z
 - Top-pair production \rightarrow "top factory"

UH

- Indirect determination of W and top quark mass possible from comparison of precise experimental results with calculations of higher orders
- Comparison with direct measurements are a crucial consistency test of the Standard Model

- Try to measure the mass of W and top as precisely as possible
- Most of the information comes from hadron colliders
 - Number of W→Iv produced at TeVatron (2 fb⁻¹): 3 Mio events
 - Number of W→Iv expected for LHC (10fb⁻¹) : 60 Mio events

A bit of history:

- Discovery of NC (Gargamelle, 1973) → m_w ~80, m_z ~90 GeV
- Rubbia+van der Meer: transformation of the CERN 450 GeV p synchrotron for Proton-Anti-Proton-IA: ~50 Events/mb[•]sec
- 2 detectors: UA1 und UA2
- 1983 discovery of W[±] und Z⁰
- 1989-2000: Measurements at LEP
- **now**: 1.96 TeV Tevatron (FNAL-Chicago)
- Starting now: p p @14 TeV at LHC (CERN-Geneva)

- if $x_a \neq x_b \rightarrow p_Z$ of W is unkown (long.)
- Again: interesting variable is $\ensuremath{p_{\text{T}}}$

Decay of the W:

- W couples to all left-handed fermions
- Expect the decay ratios:

 $\frac{W \rightarrow e^{+}v_{e}, \ \mu^{+}v_{\mu}, \ \tau^{+}v_{\tau}, \ u\bar{d}', \ c\bar{s}'}{1 \ : 1 \ : 1 \ : 3 \ : 3}$

Exp.: BR(ev)=BR($\mu\nu$)=BR($\tau\nu$)=10.7%

Corrections from hadronisation

"Typical" W event:

• W identification:

$$W^{\pm} \rightarrow e^{\pm} + v_e \qquad W^{\pm} \rightarrow \mu^+ + v_e$$

Lepton with high p_T and $p_{T,miss}$ from v_{i} "back to back"

UA1-Detektor:

- Drift chamber 2x2x6 m³
- B-filed: 0.7 Tesla
- Calorimeter for identification of electrons
- Muon-system

Johannes Haller

pp collisions

Tevatron and its experiments

TeVatron

- Proton Antiproton Collider
- Two experiments: CDF, D0
- 1992-1996: Run I √s=1.8 TeV
 - ∫L dt=125pb⁻¹
- 1996-2001: Upgrade of the machine:
 - New Injector, Anti-Proton-Recycler
 - Higher luminosity, higher rates
- Since March 2001: Run II \sqrt{s} =1.96 TeV
 - Up to now $\int L dt = 4fb-1$
 - Plan: operation until 2010

LAr-calorimeter (high granularity) In run I: no magnetic field

Johannes Haller

Measurement of the W mass in pp collisions

- Mass of the W boson can be determined from p_{Te} distribution of the electrons: $P_T^W=0, P_T^W\neq 0.$
 - "Jacobean-Peak"
 - $p_{Te} < M_W/2$

UΗ

 but sensitive to possible p_T of W (HO QCD effects)

• Less sensitive to this effect: "transverse mass":

$$m_{T} = \sqrt{\left|p_{T}^{l}\right|^{2} + \left|p_{T}^{\nu}\right|^{2} - \left(\vec{p}_{T}^{l} + \vec{p}_{T}^{\nu}\right)^{2}}$$

- Corresponds to invariant mass in transverse plane
- $M_T < M_W$

Johannes Haller

σ^{WW} [pb]

Ecm [GeV]

Studies ongoing at the TeVatron.

- E Determination of M_W from comparison of M_T simulation for various M_W with data
- Crucial: accuracy of the simulation!

What precision can be reached in Run II and at the LHC ?

Int. Luminosity	0.08 fb ⁻¹	2 fb ⁻¹	10 fb ⁻¹
Stat. error	96 MeV	19 MeV	2 MeV
Energy scale, lepton res.	57 MeV	20 MeV	16 MeV
Monte Carlo model (P _T ^W , structure functions, photon-radiation)	30 MeV	20 MeV	17 MeV
Background	11 MeV	2 MeV	1 MeV
Tot. Syst. error	66 MeV	28 MeV	24 MeV
Total error	116 MeV	34 MeV	25 MeV

• Total error per lepton species and per experiment at the LHC is estimated to be ± 25 MeV

at the Tevatron \pm 34 MeV

- Main uncertainty: lepton energy scale (goal is an uncertainty of \pm 0.02 %)
- Many systematic uncertainties can be controlled in situ, using the Z $\rightarrow \ell \ell$ sample (P_T(W), recoil model, resolution)

Combining both experiments (ATLAS + CMS, 10 fb⁻¹), both lepton species and assuming a scale uncertainty of $\pm 0.02\%$ $\Rightarrow \Delta m_{W} \sim \pm 15 \text{ MeV}$ Tevatron: 2 fb⁻¹: $\Delta m_{W} \sim \pm 30 \text{ MeV}$

• Much higher cross sections at the LHC: "top factory"

х

- Production at Hadron colliders: strong interaction
- Decay: weak interaction
- Remember: in matrix element of weak quark decays the corresponding CKM matrix element appears

$$\frac{-ig}{\sqrt{2}}\bar{t}\gamma^{\mu}\frac{1}{2}(1-\gamma^{5})V_{tb}bW_{\mu} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} \sim 0.974 & \sim 0.23 & \sim 0.003 \\ \sim 0.022 & \sim 0.974 & \sim 0.04 \\ 0.004-0.01 & 0.04 & \sim 1 \end{pmatrix}$$

- Decays t→W+s (t→Ws) and t→W+d (t→Wd) (allowed in principle) are strongly suppressed
- BR (t→Wb) = 100%

- Top is so heavy that it decays before hadronisation τ_{top}=4·10⁻²⁵s
 - There are no bound states with top flavour.
 - In top physics a free quark is studied.

 Topologies of tt events are determined by W- decay

Top Pair Decay Channels

3 event categories:

1) "Dileptons"

- +easy to identify (e and μ)
- small cross section (5% for e and μ)
- missing energy from two neutrinos

2) "Lepton+Jets"

- + Xsection: ~ 30%
- + Only one neutrino

3) purely hadronic

Hard to reconstruct (QCD background), not covered here.

Note: all events contain 2 b-jets

Side remark: "B-Tagging":

tt- candidate (Di-Lepton)

Object	$p_T (\text{GeV})$	η	ϕ
electron	65.097	-0.539	0.853
muon	48.148	0.565	3.400
jet 1	192.272	-0.183	6.027
jet 2	80.943	-0.425	4.080
E_T	156.022		2.630

Johannes Haller

- Best channel: Lepton-Jets
 - Dileptons: direct measurements impossible due to two missing $\boldsymbol{\nu}$
 - Purely hadronic: bad ratio of signal to background
- Event selection:
 - 1 hard charged lepton (e oder μ)
 - E_{Tmiss}>20 GeV
 - ≥4 hard jets (two with b-tag)

- Unclear mapping of observed jets to quarks in final state: \rightarrow 24 possibilities
- For all possible mappings a kinematic fit is performed
 - For each event the invariant mass of the blvsystem is calculated; then the measured momentums of the final state object are varied within their errors.
 - Other varied parameter of the fit is m^{reco}top.
 - Chosen is the mapping which leads to the minimal $\Delta\chi^2$ after minimization
 - m^{reco}_{top} is regarded as the observed top mass for this event

$$\chi^{2} = \sum_{i=\ell,4jets} \frac{(p_{T}^{i,fit} - p_{T}^{i,meas})^{2}}{\sigma_{i}^{2}} \\ + \sum_{j=x,y} \frac{(p_{j}^{UE,fit} - p_{j}^{UE,meas})^{2}}{\sigma_{j}^{2}} \\ + \frac{(M_{\ell\nu} - M_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(M_{jj} - M_{W})^{2}}{\Gamma_{W}^{2}} \\ + \frac{(M_{b\ell\nu} - m_{t}^{reco})^{2}}{\Gamma_{t}^{2}} + \frac{(M_{bjj} - m_{t}^{reco})^{2}}{\Gamma_{t}^{2}},$$

■ Determination of the top mass from comparison with simulation for various m_{top} values → "templates"

There are other methods which are used at the TeVatron to determine m_{top}
 World average today: 172.4±1.2 GeV

Expectation for the LHC for 10 fb⁻¹: < ~1GeV</p>

Remember: indirect prediction of a light SM Higgs boson

Interesting and relevant for the

 $-100 < M_H < 140$ GeV: $\gamma\gamma$ -decay possible

Not possible on tree level since photon

searches at the LHC:

is mass-less

- <u>SM predicts</u>: the Higgs couples to SM particles proportional to their masses
- consequence: Higgs decays into the heaviest particle which is kinematically accessible

Branching ratios of the Higgs:

Johannes Haller

UH

- ≻E.g. peak in spectrum
- ➤Width due to detector resolution
- ➤Count number of signal events N_{signal} and number of background events N_{Untergrund}
- Correct interpretation: calculate Poisson probability for deviation
- >Often: deviation given in standard deviation of a Gaussian (e.g. 2.3σ deviation")
- >needed: transformation of a Poisson probability in σ of Gaussian

<u>Approximation for large numbers (n>5):</u>

 $\sqrt{N_{Untergrund}}$: error on the number of expected background events:

 \rightarrow Significance: S =

$$\frac{N_{\rm Signal}}{\sqrt{N_{\rm Untergrund}}}$$

- S>5: deviation is greater than 5 times the error/uncertainty of the background expectation.
- ➤ Gauss: Probability for such a fluctuation: 10⁻⁷ → "discovery"
- > Improvement of S by detector resolution (width smaller \rightarrow N_U decreases) and increase of luminosity (N_S increases faster than $\sqrt{N_U}$)

Example: Search for a Higgs signal in LEP2 data:

• E_{max}~209 GeV

 \rightarrow sensitivity $\sim m_{\rm H} < 118 {\rm ~GeV}$

• <u>4 Event classes:</u>

No Higgs signal in data

- 2000: just before LEP shut-down: signal mainly driven by ALEPH events
- After complete reconstruction: 1.7 σ deviation at $\rm M_{H}{=}115$ GeV.
- Final LEP result: $m_H > 114.4$ GeV with 95% CL.

<u>ALEPH event in qq bb channel</u>:

Possible production processes:

>production@TeVatron: gg→H or WH, ZH

- >Most promising searches in main decay channels: H→ bb (m_H<~135 GeV) and H→WW (m_H>~135 GeV)
- ≻H→ bb not usable in gg→H due to QCD background, only usable in associate production.

Higgs- Signaturen am TeVatron:

```
\label{eq:mh} m_{H} < \sim 135 \ \text{GeV}:
\label{eq:WH} \rightarrow Iv \ bb
\label{eq:ZH} \rightarrow II \ bb
\label{eq:ZH} \rightarrow vv \ bb
\label{eq:MH} m_{H} > \sim 135 \ \text{GeV}:
\label{eq:MH} M^{+} W^{-} \rightarrow I^{+}v \ I^{-}v \ (\text{inclusive}) \ (*)
\label{eq:WH} M^{+} WWW \rightarrow I^{\pm}I^{\pm} + X \ (\text{leptons with same charge})
\label{eq:MH} M^{-} WWW \rightarrow I^{\pm}I^{\pm} + X \ (\text{leptons with same charge})
```

Example $H \rightarrow WW \rightarrow II_{VV}$

- ➢ Search strategy :
- Accumulation of Higgs candidates by dedicated selection cuts (preselection)
 - Require: two leptons with high p_T and E_{T,miss}
- Final selection by neural network

Amount of data not yet sufficient

Johannes Haller

- Combination of CDF and D0 results (all search channels)
- Result from 3.Aug 2008 !!

Combination of all channel allows exclusion at m_H=170 GeV

No 5 σ discovery possible with expected 10 fb⁻¹

pp collis

Important signatures at the LHC:

- Small masses:
 - gg→H→γγ
 - gg \rightarrow H \rightarrow ZZ \rightarrow 4I
 - tt H with H→bb
 - qq H \rightarrow qq $\tau\tau$
- Large masses:
 - > gg→H→ZZ→4I
 - > gg→H→WW→IvIv
 - ≫ qqH→qq WW
- Note: background!

"golden channels":

 $H \rightarrow \gamma \gamma$

Johannes Haller

H→4I

Searches for the Higgs at the LHC: $H \rightarrow ZZ^{(*)} \rightarrow IIII$

>Very narrow peak because of excellent measurement of muons. >Discovery potential in the region m_H :130 GeV to 600 GeV

UΗ

signal: $\frac{g}{\eta}$

 $\sigma^*BR \sim 50 \text{ fb} \qquad BR \sim 10^{-3}$

background:

UH

≻<u>γγ (irreducible)</u>: z.B.:

- $\sigma_{\gamma\gamma} \sim 2 \text{ pb / GeV}$
- Γ_H ~ MeV
- needed: σ(m)/m~1%

≻<u>γj+jj (reducible)</u>

high jet-rejection

 \rightarrow Challenge for electromagnetic calorimeters

q

Discovery potential: 100-140 GeV

expected signals:

Individual and combined significances for 30 fb⁻¹

- There are several other search channels
- At the LHC the Higgs boson can be discovered in the full mass region in 30fb⁻¹.
- 30fb⁻¹ corresponds to ~3 year of data taking!

Just an incomplete selection:

- Are the SM particle fundamental? Pointlike?
- Why is there a difference between fermion (matter) and bosons (interactions)
- Why are there different generations?
 Why 3? Really 3?
- What is the difference between quarks and leptons?
- Strong interaction with 3 colors
- Interesting : "Chiral Anomalies" cancel only if Q_e=3Q_d and 3 colors→ connection between QCD and electromagnetism?
- Why SU(3)xSU(2)xU(1)?

• Content of the SM: complex? 17 fundamental particles+ gluons 3 interactions (+gravitation)

• Many free parameters!

g , g ', α _s	3 couplings		
λ, μ	2 H potential		
strong CP phase	1		
CKM- Matrix	4		
for m _n =0:	9 fermion masses		
for m _n ≠0:	12 fermion masses		
+CKM leptons	4		
\rightarrow 1926 free parameters			

 Gravitation not integrated in SM → Hierarchy problem

- To address the open questions of the SM, several extensions of the SM are being discussed.
 - Note: these extension must still describe the available measurements \rightarrow strong restriction!
- Examples for theories beyond the standard model (BSM)
 - <u>Compositeness models:</u>
 - Assumption: fermions and/or bosons are composite particles
 - Colliders: search excited states and their decay
 - Technicolor:
 - Higgs is not a fundamental particle, but made of particle, interacting via a new colour interaction
 - Problems in description of precision measurements at the Z pole.
 - Additional space dimensions:
 - Gravitation acts in more than the know 4 space-time dimensions → "solution" of the hierarchy problem: fundamental gravitation is not weak; it appear to be weak in our 4-dim world, since it acts in the other dimensions as well.
 - Since new dimensions are compactified: quantization of the masses of the graviton states → sharp resonances in various spectra....
 - **GUT:** gauge groups of the SM are sub-groups of a bigger fundamental group
 - Supersymmtry: Symmetry between fermions and bosons.

 ➢ Introduction of a new "SuperSymmetry"
 Fermion ← → Boson

UH

 Introduction of SUSY Partners for all SM particles

SM Teilchen (R=1)	SUSY Partner (R=-1)	
Quarks q	Squarks $ ilde q$	
Leptons 1	Sleptons \tilde{l}	
W [±] , Ζ ⁰ ,γ,	Neutralinos, $\chi^0_{1,2,3,4}$	
Higgs: h, A ⁰ , H ⁰ , H [±]	Charginos $\chi^{\pm}_{1,2}$	
Gluons g	Gluino ĝ	

→ New contributions to Higgs Mass
> contributions cancel
if $\Delta M < 1 \text{ TeV}$ → Solution to hierarchy
problem
H⁰ - - - H⁰

SUSY can provide explanation for Dark Matter:

If stable, the Lightest Susy Particle leads to the correct relic density in the universe

- → SUSY is first candidate theory for New Physics
- ... and note: $M_{SUSY} < 1 \text{ TeV}$

pp

Other properties of SUSY:

- LSP (lightest supersymmetric particle, χ^{0}_{1}) can explain the density of cold dark matter in the universe.
- Unification of couplings possible

<u>But:</u>

- Many free parameters
- Not yet discovered

Johannes Haller

- Searches at all colliders: no signal
- Assumptions: SUSY particles are heavier than the experimentally covered area.

- With its large centre-of-mass energy the LHC is able cover the full interesting region (up to m_{squark}=3 TeV)
- At the LHC squarks and gluinos are produced via the strong interaction
 - Cross sections are high

 $gg,q\overline{q},qq,qg \rightarrow \tilde{g}\tilde{g},\tilde{q}\tilde{q},\tilde{q}\tilde{g}$

Decay in long cascades

- Inclusive selection in order to be independent from exact SUSY model
- In general we expect:
 - Hard jets
 - Missing E_T
 - (Hard leptons)

- Typical inclusive selection for searches at the LHC:
 - E_{T,miss} > 200 GeV
 - ≥ 4 Jets with p_T > 100, 50, 50, 50 GeV
- Good variable to separate signal from background: effective mass

$$M_{\text{eff}} \equiv \sum_{i} |p_{T(i)}| + E_T^{\text{miss}}$$

- Sum runs over all jets
- Results are shown for 100 pb⁻¹ only! Very first data!
- But note: understanding the detector will take longer!

ATLAS simulation:

- Only shown: a particular SUSY model
- In general: very good prospect to discover SUSY if it exists

5σ discovery reach in mSUGRA plane:

- more difficult at LHC alone: reconstruction of SUSY masses (exclusive decay chains)
- but: needed to provide evidence for a specific SUSY model

ILC can help in many areas: "LEP for SUSY"

- inclusive discovery of SUSY "easy" at the LHC
- identification of SUSY model more involved (need ILC)

Assumption:

- There is s single gauge group G_{GUT} with just one coupling constant a_{GUT}
- $\sim G_{GUT}$ contains U(1)_YxSU(2)_LxSU(3)_C
- Fundamental symmetry is spontaneously broken at M_{GUT}~10¹⁵ GeV by GUT-Higgs field.

Simple example: SU(5):

- $\succ. SU(5) \supset SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
- ≻Gauge invariance → new bosons
 - ≻number: n²-1=24
 - We know: 8 gluons, Z^0 , W^{\pm} , γ
 - ➢remaining: 12 new bosons: Y, X

Fermions are arranged in 5pletts and 10-pletts

New bosons carry new GUT interaction between multiplet members

X,Y interact between quarks and leptons: "Leptoquarks"

Note: simple SU(5) already excluded, since it predicts a too short proton lifetime

pp collisions

Direct search for leptoquarks at colliders

λ

1

10

H1 CI

400

CL=0.95

H1 single prod.

OPAL indir. limit

LQ Mass (GeV)

D0 pair prod.

350

õ _{1 / 2, L}

- \succ More complicated GUT models exist \rightarrow many of them contain LQs
- Consequence: new Feynman diagrams (not allowed in SM)
- e.g. resonant (s channel) production of LQs at HERA

Production of LQs in pp collisions:

- Search for final states with two leptons
- LQ have certain gauge couplings

200

Constraints from pp collisions (e.g. TeVatron) are independent of the coupling λ

250

SCALAR LEPTOQUARKS WITH F=0

300

CLUDED

Up to now no experimental hint for Leptoquarks

Johannes Haller

UΗ

example: LQs of the first two generations

- signature: two leptons and two jets with high energy
- SM background strongly suppressed:
 - QCD: suppressed by two lepton requirement
 - > <u>Drell/Yan</u>: suppressed by requirement of high M_{II} und high M_{II}
 - <u>tt production</u>: suppressed by E_{Tmiss}<70GeV</p>
- ➤ Mass reconstruction:

UH

- Two possible mappings for Jet/Jet/Lepton/Lepton association
- \succ Chose the one with the smallest difference in M_{Ii}
- Results of simulation for 30 fb⁻¹ (3 years)

LHC discovery potential
➢ 30fb⁻¹: up to 1.3 TeV
➢ final sensitivity: ~1.5 TeV

- Wide range of physics processes covered in pp collisions at the LHC
 - Complete new era in particle physics, unexplored regions.
- Expect from LHC: Full coverage of the allowed mass range for the Higgs
 - Many different channels \rightarrow solid discovery
 - Golden channels $H \rightarrow \gamma \gamma$, $H \rightarrow 4I$
 - **5** σ discovery possible with 30fb⁻¹ (3 years of data taking)
- Expect from LHC: Final word on Supersymmtry
 - SUSY signal expected below ~1 TeV to solve hierarchy problem
 - LHC can cover the region up to m_{squark}~3TeV
 - First data already enough for discovery, but: need to understand the detector and the backgrounds first.
- Final word in many other theories of physics beyond the SM (e.g Leptoquarks)
 - Sensitivity for new particles up to ~2-3 TeV depending on the model

After ~20 years of preparations the first data from the LHC are expected soon

- First two beam operation scheduled for beginning of September !
- I! Very exciting time for experimentalists and theorists !!