What is the HERMES Experiment?

HERa MEasurement of Spin

- Collaboration of 140 physicists
 24 Institutions
- ► 12 Countries

Original goal:

Understand the spin structure of the nucleon

Present goal:

Understand the nucleon

OUTLINE

- Introduction to polarized DIS
 - → Also a bit of history
- The HERMES Detector
- The longitudinal spin Structure of the nucleon
- Going beyond the quark helicity

History of Spin

Stern-Gerlach Experiment 1922

Expectation from Classical Physics

$$F = \nabla \left(\vec{\mathbf{m}} \bullet \vec{\mathbf{B}} \right)$$
$$F = m_B \nabla B$$

m magnetic moment vector \vec{B} the magnetic field m_B the projection of m on B

2D5/2

2D332 2P3/2

2P+/2 2S+/2

Is Spin Important?

Pauli principle ...

Particle wavefunction is antisymmetric under interchange of identical particles.

Two particles cannot occupy the same quantum state.

- Half integer SPIN
 - → Obey Pauli principle
 - → Fermi-Dirac statistics
 - Fermions
- Integer SPIN
 - → Don't care about Pauli principle
 - → Bose-Einstein statistics:
 - Bosons

Is Spin Important?

Pauli principle ...

Half integer SPIN

Matter

Integer SPIN

Forces

F	ERMI	ONS	matter constituents spin = 1/2, 3/2, 5/2,					
Leptor	15 spin	= 1/2	Qua	Quarks spin = 1/2				
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge			
ν_e electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3			
e electron	0.000511	-1	d down	0.006	-1/3			
$v_{\mu} \stackrel{\text{muon}}{_{\text{neutrino}}}$	<0.0002	0	C charm	1.3	2/3			
μ muon	0.106	-1	S strange	e 0.1	-1/3			
$ u_{\tau}^{tau}_{neutrino}$	<0.02	0	t top	175	2/3			
au tau	1.7771	-1	b bottom	4.3	-1/3			

BOSONS

force carriers spin = 0, 1, 2, ...

Unified Electroweak spin = 1				Strong (color) s		
Name	Mass GeV/c ²	Electric charge		Name	Mass GeV/c ²	
γ photon	0	0		g gluon	0	
W-	80.4	-1				
W+	80.4	+1				
Z ⁰	91,187	0				

spin = 1

Electric

charge

0

How to study the nucleon spin? Deep Inelastic Scattering

E'

 $\boldsymbol{\nu}$ is the energy of the virtual photon in the lab frame

- Q^2 is the squared 4-momentum of the virtual photon.
- X The Bjorken scaling variable
 - \rightarrow The fraction of the total nucleon momentum carried by the struck quark.
- *y* The inelastion $Q^2 > 1 \text{GeV}^2$
 - The fraction of the incoming momentum carried by the virtual photon. The lastic $\leftrightarrow M_x^2 \neq M_x^2$ implying X<1 rise by the virtual photon.

 $L_{\mu\nu}$ leptonic part of the cross section

- \rightarrow Independent of the proton structure
- → Purely electromagnetic \rightarrow Calculable in QED

 $W^{\,\mu
u}$ hadronic part of the cross section

- \rightarrow Contains info on the proton structure
- → Not Calculable in QCD

Hadronic Tensor $W^{\mu\nu}$

Parameterized by structure functions (Lorentz invariance, current conservation, parity, ect.)

Why do polarized leptons measure quark helicity distributions? Look at the virtual photon cross section.

$$\gamma$$
 (v,Q²)
e q⁻

Photon and nucleon spins aligned

$$S_{\gamma} + S_{N} = 1 + 1/2 = 3/2$$

$$\sigma_{3/2}$$

$$S_{N} = -S_{q}$$

$$\sigma_{3/2} \sim q^{-}(x)$$

Photon and nucleon spins anti-aligned

$$S_{\gamma} + S_{N} = 1/2$$
$$\sigma_{1/2}$$
$$S_{N} = S_{q}$$
$$\sigma_{1/2} \sim q^{+}(x)$$

•Virtual photon can only couple to quarks of opposite helicity

- Select quark helicity by changing target polarization direction
- Different targets give sensitivity to different quark flavors

Cross section <u>Asymmetries</u>

 $\sigma_{1/2}$ and $\sigma_{3/2}$ are roughly the same size so you cannot measure both separately and subtract the results. What you measure is the ratio of sums and differences of cross sections called asymmetries.

$$\mathsf{A}_{\parallel} = \frac{\sigma^{\stackrel{\rightarrow}{\leftarrow}} - \sigma^{\stackrel{\rightarrow}{\Rightarrow}}}{\sigma^{\stackrel{\rightarrow}{\leftarrow}} + \sigma^{\stackrel{\rightarrow}{\Rightarrow}}}$$

- Changes to the beam, target, and detector on time scales longer than the flipping time cancel!
- Enables measuring the effect of very small cross section differences.
 - → HERMES few percent
 - → CP violation 10⁻⁶
- As the cross section differences are small large statistics are needed.

Structure Functions and Measured Asymmetries

D,d,R,γ,ξ,η kinematic factors

Virtual Photon Asymmetries

 $F_{1} = \frac{1}{2} \sum_{f} e_{f}^{2} \left(q_{f}^{+}(x) + q_{f}^{-}(x) \right) = \frac{1}{2} \sum_{f} e_{f}^{2} q_{f}(x) \quad g_{1}(x) = \frac{1}{2} \sum_{f} e_{f}^{2} \left(q_{f}^{+}(x) - q_{f}^{-}(x) \right) = \frac{1}{2} \sum_{f} e_{f}^{2} \Delta q_{f}(x)$

Momentum distribution of the Quarks

Helicity distribution of the Quarks

The spin structure of the nucleon

The HERMES Experiment

Necessary ingredients

- Polarized beam
- Polarized target
- Particle identification
 - → Lepton hadron separation
- Large acceptance spectrometer

Additional capabilities

- Hadron identification
- Acceptance at large angles
- Unpolarized heavy targets

The Polarized Target

Credic PK Agency Bilderberg/ Ginter, Peter

ADVANTAGES:

- > no dilution; all the material is polarised
- no radiation damage
- rapid inversion of polarisation direction every 90s in less than 0.5s

The HERMES target cell

- > Material: 75µm Al with Drifilm coating + ice
- Size: length 40cm, elliptical cross section (21mm x 8.9 mm)
- Working temperature: 100K (variable 35k 300K)
- Increase of density to free jet ~100 (3 5*10³¹ nucl/cm²/s)

Target Performance

Longitudinal Polarization:

1996-1997 Hydrogen $|P_T| = 85\%$ $\rho = 7.6 \times 10^{13} \text{ nucl./cm}^2$ 1999-2000 Deuterium $|P_T| = 85 \%$

Transverse Polarization: 2002-2005 Hydrogen $|P_T| = 0.75\%$

$$\mathbf{P}_{T} = \alpha_{0}\alpha_{r}\mathbf{P}_{a} + \alpha_{0}(1-\alpha_{r})\mathbf{P}_{m}$$

 P_{T} = total target polarization α_0 = atomic fraction in absence of recombination α_r = atomic fraction surviving recombination **P**_a = polarization of atoms

P_m = polarization of recombined molecules

>Unpolarized Gases:

 \rightarrow H²,D²,He,N2,Ne,Xe

The HERMES Spectrometer

- Magnetic spectrometer for momentum measurement.
- Electromagnetic calorimeter for energy measurement and photon detection.
- Relatively large acceptance.
- Excellent particle identification.

The HERMES Spectrometer

Which Particle is Which

Physics requirement: Need lepton hadron separation over wide momentum range

HERMES Recoil Detector timeline

- From 1996 through 2005 HERMES ran with the polarized H/D target.
 - → November 2005 the ABS was removed.
- In January 2006 the recoil detector was installed.
- February started data taking.
 - → Scintillating fiber detector worked immediately.
- Full detector operations since September 2006.
 - → 20M DIS in 2007
 - → 20M DIS in 2006
 - Recoil only for part of data.

Recoil Detector Overview

Back to inclusive physics

Measuring g₁

Model-independent unfolding

- detector smearing
- QED radiative effects

kinematic migration inside acceptance for each spin state

j=0 bin: kinematic migration into the acceptance smearing within acceptance

systematic correlations between bins fully unfolded
 resulting (small) statistical correlations known

World Data on $xg_1(x,Q^2)$

$$g_{1}^{p} > g_{1}^{d} > g_{1}^{^{3}\text{He}}$$

$$Very \text{ precise proton data}$$

$$The most precise deuteron data$$

$$g_{1}^{d} = \frac{1}{2} \left(1 - \frac{3}{2} W_{d} \right) \left(g_{1}^{p} + g_{1}^{n} \right)$$

• 0.021-0.9 measured range:

$$\int g_1^p = 0.1246 \pm 0.0032 \pm 0.0074$$

$$\int g_1^d = 0.0452 \pm 0.0015 \pm 0.0017$$

World data on g1

$$\sigma^{\mathsf{ep}\to\mathsf{eh}} \sim \sum_{\mathsf{q}} DF^{\mathsf{p}\to\mathsf{q}} \otimes \sigma^{\mathsf{eq}\to\mathsf{eq}} \otimes FF^{\mathsf{q}\to\mathsf{h}}$$

> The fragmentation process cannot be calculated theoretically.

Favored: struck quark is in the formed hadron Favored $D_{u}^{\pi^{+}}(z,Q^{2})$ J Stewart Unfavored $D_{\overline{u}}^{\pi^{+}}(z,Q)$

 $\pi^+ = ud$

Quark Polarizations

Correlation between detected hadron and the struck quark allows flavor separation

Inclusive DIS $\rightarrow \Delta \Sigma$ Semi-inclusive $\rightarrow \Delta u, \Delta \overline{u}, \Delta d, \Delta \overline{d}, \Delta s$

$$A_{1}^{h}(x,Q^{2}) = \frac{\sigma_{1/2}^{h} - \sigma_{3/2}^{h}}{\sigma_{1/2}^{h} + \sigma_{3/2}^{h}} \sim \frac{\sum_{f} e_{f}^{2} \Delta q_{f}(x,Q^{2}) \int dz D_{f}^{h}(z,Q^{2})}{\sum_{f} e_{f}^{2} q_{f}(x,Q^{2}) \int dz D_{f}^{h}(z,Q^{2})} \sim \sum_{f} \frac{e_{f}^{2} q(x) \int dz D_{f}^{h}(z,Q^{2})}{\sum_{f'} e_{f'}^{2} q_{f'}(x) \int dz D_{f'}^{h}(z,Q^{2})} \frac{\Delta q(x)}{q(x)}$$
Linear System in \vec{Q}

$$\vec{A} = (A_{1,p}(x), A_{1,d}(x), A_{1,p}^{\pi^{\pm}}(x), A_{1,d}^{\pi^{\pm}}(x), A_{1,d}^{K^{\pm}}(x))$$

$$\vec{Q} = \left(\frac{\Delta u}{u}, \frac{\Delta d}{d}, \frac{\Delta \overline{u}}{\overline{u}}, \frac{\Delta \overline{d}}{\overline{d}}, \frac{\Delta s}{s}, \frac{\Delta \overline{s}}{\overline{s}} = 0\right)$$

$$\vec{A} = O$$

The Measured Hadron Asymmetries PROTON

Polarized Quark Densities ermes $\Delta q(x) = \vec{q}(x) - \vec{q}(x)$ $\Delta u(x) > 0$ Polarized parallel to the proton $\Delta d(x) \leq 0$ Polarized anti-parallel to the proton $\Delta u(x)$ and $\Delta d(x)$ Good agreement with LO-QCD fit $\overline{u}(x)$ and $\Delta d(x) \sim 0$ No indication for Ms →0.028 ± 0.033 ± 0.009 In the measured range

$\overline{d} - \overline{u} > 0$ Reanalyze polarized data: Fit for $\vec{Q} = \left(\frac{\Delta u}{u}, \frac{\Delta d}{d}, \frac{\Delta \overline{u} - \Delta \overline{d}}{\overline{u} - \overline{d}}, \frac{\Delta s}{s}\right)$

> Polarized data favor a symmetric sea $\Delta \overline{d} - \Delta \overline{u}$, but large uncertainties

Distribution Functions

Leading Twist

> 3 distribution functions survive the integration over transverse quark momentum

Properties of the Transversity DFs

- For non-relativistic quarks $\delta q(x) = \Delta q(x)$
 - δq(x) probes the relativistic nature of the quarks
- Due to Angular Momentum Conservation
 - → Different QCD evolution
 - → No gluon component

>
$$\delta \Sigma(x) = \sum_{q} \left[\delta q(x) - \delta \overline{q}(x) \right]$$

- → Predominately sensitive to valence quarks
- Bounds
 - $\left|\delta q(x)\right| \leq q(x)$
 - Soffer Bound: $|\delta q(x)| \leq [q(x) + \Delta q(x)]$
- T-even
- Chiral odd
 - → Not measurable in inclusive DIS

Azimuthal angles and asymmetries

and scattering plane

J Stewart

proton spin and scattering plane

 $(\varphi_h + \varphi_S)$ angle of hadron relative to final quark spin (Collins)

 $(\varphi_h - \varphi_S)$ angle of hadron relative to *initial* quark spin (Sivers)

 $\pi + (\varphi_h - \varphi_S)$

lepton plane

Quark photon interaction preserves spin component out of plane and reverses component in plane

α=α

$$A_{\text{coll}} \propto h_1(x) H_1^{\perp}(z)$$

$$A_{Sivers} \propto f_{1T}^{\perp}(x) D_1(z)$$

Sivers Function $f_{1T}^{\perp(1/2)}$ $\sigma^{ep \to eh} \sim \sum DF^{p \to q} \otimes \sigma^{eq \to eq} \otimes FF^{q \to h}$

- Distribution function
 - Naïve T-ODD
 - → Chiral even
- a remnant of the quark transverse momentum can survive the photo-absorption and the fragmentation process
- Can be inherited in the transverse momentum component
 - influence azimuthal distribution
- Non-vanishing Sivers function requires quark orbital angular momentum
- Cross section depends on the angle between the target spin direction and the hadron production plane

 $A_{UT} \sim \sin(\phi_h - \phi_s) \sum_q e_q^2 f_{1T}^{\perp(1/2)}(x) D_1^q(z)$

Single target-spin asymmetry

π⁻ < 0 • π^{-} unexpected large role of unfavoured FF

- $H_{fav} = H_{unfav}$
- first data for Collins-FF available from Belle
 - ♦ extraction of h₁ from Hermes asymmetries

- K^+ and π^+ consistent with u-quark dominance
- $\blacksquare K^-$ and $\pi^$
 - complicated sea quark contr.

Generalized Parton Distributions

Analysis of *hard exclusive processes* leads to a new class of parton distributions

Cleanest example: Deeply Virtual Compton scattering

- \boldsymbol{x} : average quark momentum fracⁿ
- ξ : "skewing parameter" = $x_1 x_2$
- t. 1 momentum transfor²

Four new distributions = "GPDs"

helicity conserving $\rightarrow H(x,\xi,t), E(x,\xi,t)$ helicity flip $\rightarrow \tilde{H}(x,\xi,t), \tilde{E}(x,\xi,t)$

"Femto-photography" of the proton

Fourier transform of t-dependence ...

Summary

- Quark helicity distributions are now well measured.
 - → Inclusive using NLO fits (sea assumption)
 - → Semi-inclusive data using flavor tagging
- Gluon polarization extracted using leading order extraction from high pt hadrons.
- Transversity data now being analyzed. Clear signal is seen.
- Large DVCS data set collected for the GPD determination.
- First steps toward understanding angular momentum.

