What is the HERMES Experiment?

HERa MEasurement of Spin

Armenia

Germany

Poland

Belgium

Italy

Russia

Canada

Japan

United Kingdom

China

Netherlands

USA

Original goal:

Understand the spin structure of the nucleon

Present goal:

Understand the nucleon

OUTLINE

> Introduction to polarized DIS
\rightarrow Also a bit of history
$>$ The HERMES Detector
$>$ The longitudinal spin Structure of the nucleon
$>$ Going beyond the quark helicity

History of Spin

Stern-Gerlach Experiment 1922

Expectation from Classical Physics

$$
\begin{array}{ll}
F=\nabla(\overrightarrow{\mathrm{m}} \bullet \overrightarrow{\mathrm{~B}}) & \mathbf{m} \text { magnetic moment vector } \\
F=m_{B} \nabla B & \overrightarrow{\mathrm{~B}} \text { the magnetic field } \\
m_{B} \text { the projection of } \mathrm{m} \text { on } \mathrm{B}
\end{array}
$$

History of Spin

Uhlenbeck and Goudsmit 1926
$\mathrm{M}_{s}=\frac{g \mu_{B}}{\hbar} S$

The hydrogen spectrum

Is Spin Important?

Pauli principle ...
Particle wavefunction is antisymmetric under interchange of identical particles.

Two particles cannot occupy the same quantum state.
$>$ Half integer SPIN
\rightarrow Obey Pauli principle
\rightarrow Fermi-Dirac statistics

- Fermions
> Integer SPIN
\rightarrow Don't care about Pauli principle
\rightarrow Bose-Einstein statistics:
- Bosons

Is Spin Important?

Pauli principle ...
> Half integer SPIN

Matter

$>$ Integer SPIN

Forces

FERMONS			matter constituents spin $=1 / 2,3 / 2,5 / 2, \ldots$		
Leptons spin $=1 / 2$			Quarks spin = 1/2		
Flavor	$\begin{aligned} & \text { Mass } \\ & \mathrm{GeV} / \mathrm{c}^{2} \end{aligned}$	Electric charge	Flavor	Approx. Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
v_{e} electron neutrino e electron	$\begin{array}{\|l\|} \hline<1 \times 10^{-8} \\ 0.000511 \end{array}$	0 -1	U up d down	$\begin{aligned} & 0.003 \\ & 0.006 \end{aligned}$	$\begin{gathered} 2 / 3 \\ -1 / 3 \end{gathered}$
$\boldsymbol{v}_{\boldsymbol{\mu}}^{\substack{\text { meutrino } \\ \boldsymbol{\mu} \\ \text { muon }}}$	<0.0002 0.106	0 -1	C charm S strange	1.3 0.1	$2 / 3$ $-1 / 3$
v_{τ} tau τ neutrino τ tau	$\begin{array}{r} <0.02 \\ 1.7771 \end{array}$	0 -1	t top b bottom	175 4.3	$2 / 3$ $-1 / 3$

BOSONS			force carriers$\text { spin }=0,1,2, \ldots$		
Unified Electroweak spin = 1			Strong (color) spin = 1		
Name	Mass $G e \mathrm{~V} / \mathrm{c}^{2}$	Electric charge	Name	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
$\begin{gathered} \gamma \\ \text { photon } \end{gathered}$	0	0	$\underset{\text { gluon }}{\mathbf{g}}$	0	0
$\begin{gathered} W^{-} \\ W^{+} \\ Z^{0} \end{gathered}$	$\begin{gathered} 80.4 \\ 80.4 \\ 91.187 \end{gathered}$	$\begin{gathered} -1 \\ +1 \\ 0 \end{gathered}$			

How to study the nucleon spin? Deep Inelastic Scattering

From E, E^{\prime}, and θ three scaling variables can be computed Q^{2},

$\begin{aligned} & \text { HERMES is a Fixed target experimenR } R^{2} \\ & \text { The measured quantities in the } B \mathbf{M}\left(E-E^{\prime}\right)\end{aligned}=\frac{Q^{2}}{2 M v}$ system are $\mathrm{E}, \mathrm{E}^{\prime}$, and θ.

$$
\begin{aligned}
& \mathrm{y}=\left|\mathrm{E}-\mathrm{E}^{\prime}\right| / \mathrm{E} \\
& \text { with } \quad v^{\text {lab }}=\mathrm{E}-\mathrm{E}^{\prime}
\end{aligned}
$$

v is the energy of the virtual photon in the lab frame

E^{\prime}
 Deep Inelastic Scattering

Quark Parton Model

$$
\begin{aligned}
& \mathrm{Q}^{2}=-\left(\mathrm{k}-\mathrm{k}^{\prime}\right)^{2}=-q^{2} \\
& \mathrm{x}=\frac{\mathrm{Q}^{2}}{2 p \cdot q}=\frac{\mathrm{Q}^{2}}{2 \mathrm{M} v} \\
& y=\frac{p \cdot q}{p \cdot \mathrm{k}}=\mathrm{v} / \mathrm{E} \\
& \text { and } \\
& \mathrm{x} y=\mathrm{Q}^{2} /\left(s-\mathrm{M}^{2}\right)
\end{aligned}
$$

Q^{2} is the squared 4-momentum of the virtual photon.
X The Bjorken scaling variable
$\rightarrow \quad$ The fraction of the total nucleon momentum carried by the struck quark.
$y \quad$ The inelastiqitkep" \leftrightarrow high resolution: $\mathrm{Q}^{2}>1 \mathrm{GeV}^{2}$
 photon.

DIS Cross Section

$\sigma(\mathrm{ep} \rightarrow \mathrm{eX})$
$\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{dE}^{\prime}}=\frac{\alpha^{2} \mathrm{E}^{\prime}}{2 \mathrm{MQ}^{4} \mathrm{E}} \underbrace{L_{\mu \nu}(k, q, s)}_{\text {leptonic }} \underbrace{W^{\mu \nu}(P, q, S)}_{\text {hadronic }}$
$L_{\mu \nu}$ leptonic part of the cross section
\rightarrow Independent of the proton structure
\rightarrow Purely electromagnetic \rightarrow Calculable in QED
$W^{\mu \nu}$ hadronic part of the cross section
\rightarrow Contains info on the proton structure
$\rightarrow \quad$ Not Calculable in QCD

Hadronic Tensor $W^{\mu \nu}$

$>$ Parameterized by structure functions
(Lorentz invariance, current conservation, parity, ect.)
QPM: $\quad F_{1}=\frac{1}{2} \sum_{f} e_{f}^{2}\left(q_{f}^{+}(x)+q_{f}^{-}(x)\right)=\frac{1}{2} \sum_{f} e_{f}^{2} a_{f}(x)$ momentum distribution of quarks

Why do polarized leptons measure quark helicity distributions?
 Look at the virtual photon cross section.

Photon and nucleon spins aligned

$$
\begin{gathered}
\mathrm{S}_{\gamma}+\mathrm{S}_{\mathrm{N}}=1+1 / 2=3 / 2 \\
\sigma_{3 / 2} \\
\mathrm{~S}_{\mathrm{N}}=-\mathrm{S}_{\mathrm{q}} \\
\sigma_{3 / 2} \sim \mathrm{q}^{-}(\mathrm{x})
\end{gathered}
$$

Photon and nucleon spins anti-aligned

$$
\begin{gathered}
\mathrm{S}_{\gamma}+\mathrm{S}_{\mathrm{N}}=1 / 2 \\
\sigma_{1 / 2} \\
\mathrm{~S}_{\mathrm{N}}=\mathrm{S}_{\mathrm{q}} \\
\sigma_{1 / 2} \sim \mathrm{q}^{+}(\mathrm{x})
\end{gathered}
$$

-Virtual photon can only couple to quarks of opposite helicity

- Select quark helicity by changing target polarization direction
-Different targets give sensitivity to different quark flavors

Cross section Asymmetries

$\sigma_{1 / 2}$ and $\sigma_{3 / 2}$ are roughly the same size so you cannot measure both separately and subtract the results. What you measure is the ratio of sums and differences of cross sections called asymmetries.

$$
\mathrm{A}_{\|}=\frac{\sigma^{\vec{\epsilon}}-\sigma^{\vec{~}}}{\sigma^{\vec{\in}}+\sigma^{\vec{~}}}
$$

> Both beam and target helicities are reversed as often as possible.
\rightarrow Changes to the beam, target, and detector on time scales longer than the flipping time cancel!
> Enables measuring the effect of very small cross section differences.
\rightarrow HERMES few percent
\rightarrow CP violation 10^{-6}
> As the cross section differences are small large statistics are needed.

Structure Functions and Measured Asymmetries

$$
\begin{array}{ll}
\mathrm{A}_{\| l}=\frac{\sigma^{\vec{\epsilon}}-\sigma^{\vec{~}}}{\sigma^{\vec{\epsilon}}+\sigma^{\vec{~}}} & \mathrm{~A}_{\perp}=\frac{\sigma^{\uparrow \rightarrow}-\sigma^{\uparrow \leftarrow}}{\sigma^{\uparrow \rightarrow}+\sigma^{\uparrow \leftarrow}} \\
\mathrm{A}_{\|}=\mathrm{D}\left(\mathrm{~A}_{1}+\eta \mathrm{A}_{2}\right) & \mathrm{A}_{\perp}=\mathrm{d}\left(\mathrm{~A}_{2}+\xi \mathrm{A}_{1}\right)
\end{array}
$$

D, d, R, $,, \varsigma, \eta$
kinematic factors

Virtual Photon Asymmetries

$$
\begin{aligned}
& \mathrm{A}_{1}=\frac{\sigma_{1 / 2}-\sigma_{3 / 2}}{\sigma_{1 / 2}+\sigma_{3 / 2}}=\frac{g_{1}-\gamma^{2} g_{2}}{\mathrm{~F}_{1}} \quad \mathrm{~A}_{2}=\frac{\sigma_{\frac{\mathrm{T}}{}}}{\frac{\gamma}{\mathrm{~T}}}=\frac{\gamma\left(g_{1}+g_{2}\right)}{\mathrm{F}_{1}} \\
& F_{1}=\frac{1}{2} \sum_{f} e_{f}^{2}\left(q_{f}^{+}(x)+q_{f}^{-}(x)\right)=\frac{1}{2} \sum_{f} e_{f}^{2} q_{f}(x) \quad g_{1}(x)=\frac{1}{2} \sum_{f} e_{f}^{2}\left(q_{f}^{+}(x)-q_{f}^{-}(x)\right)=\frac{1}{2} \sum_{f} e_{f}^{2} \Delta \mathrm{q}_{\mathrm{f}}(x)
\end{aligned}
$$

Momentum distribution of the Quarks
Helicity distribution of the Quarks

The spin structure of the nucleon

Constituent quark model

$$
\Delta u_{v}=\frac{4}{3} \quad \Delta d_{v}=-\frac{1}{3}
$$

Include relativistic wavefunction

$$
\Delta \Sigma \approx 0.75
$$

Unpolarised structure fct.

Gluons are important !
$\Longrightarrow \Delta G \quad \frac{1}{2}=\frac{1}{2}\left(\Delta u_{v}^{F}+\Delta d_{v}\right)$ desciption of J_{q} and J_{g}
\Longrightarrow Sea quartks $2 \mathrm{q}_{\mathrm{s}} \underbrace{\Delta u_{v}+a_{v}}$ needs
orbital angular momentum

$$
\Delta \Sigma=1
$$

The HERMES Experiment

Necessary ingredients
> Polarized beam
> Polarized target
> Particle identification
\rightarrow Lepton hadron separation
> Large acceptance spectrometer

Additional capabilities
> Hadron identification
> Acceptance at large angles
> Unpolarized heavy targets

Hermes at HERA

The Polarized Target

The HERMES polarised gas target

ADVANTAGES:

$>$ no dilution; all the material is polarised
$>$ no radiation damage
$>$ rapid inversion of polarisation direction every 90 s in less than 0.5 s

The HERMES target cell

$>$ Size: length 40 cm , elliptica) eross section ($2.1 \mathrm{~mm} \times 8.9 \mathrm{~mm}$)
$>$ Working temperature: 100 K (variable $35 \mathrm{k}-300 \mathrm{~K}$)
$>$ Increase of density torise jefriDO ($3 /-5^{* 1} 10^{61}, \mathrm{nucl} / \mathrm{cm}^{2} / \mathrm{s}$)

Target Performance

Longitudinal Polarization:
1996-1997 Hydrogen $\left|P_{T}\right|=85 \% \quad \rho=7.6 \times 10^{13}$ nucl./cm ${ }^{2}$
1999-2000 Deuterium $\left|\mathrm{P}_{\mathrm{T}}\right|=85$ \%

Transverse Polarization:
2002-2005 Hydrogen $\left|\mathrm{P}_{\mathrm{T}}\right|=\mathbf{0 . 7 5 \%}$

$$
P_{T}=\alpha_{0} \alpha_{r} P_{a}+\alpha_{0}\left(1-\alpha_{r}\right) P_{m}
$$

$\mathrm{P}_{\mathrm{T}}=$ total target polarization
$\alpha_{0}=$ atomic fraction in absence of recombination
$\alpha_{r}=$ atomic fraction surviving recombination
$P_{a}=$ polarization of atoms
$P_{m}=$ polarization of recombined molecules
>Unpolarized Gases:
$\rightarrow \mathrm{H}^{2}, \mathrm{D}^{2}, \mathrm{He}, \mathrm{N} 2, \mathrm{Ne}, \mathrm{Xe}$

The HERMES Spectrometer

> Magnetic spectrometer for momentum measurement.
Electromagnetic calorimeter for energy measurement and photon detection.
> Relatively large acceptance.
> Excellent particle identification.

The HERMES Spectrometer

Magnetic Spectrometer:
KipenstigtİRngy innetric $x \leq 0.8$ at $Q^{2} \geq 1 \mathrm{GeV}^{2}$ and $\mathrm{W} \geq 2 \mathrm{GeV}$

$>$ Large acceptance

Which Particle is Which

Physics requirement: Need lepton hadron separation over wide momentum range

In worst case factor 10^{5} hadron suppression is needed

combined suppression 10^{3} Factor 100 still needed

The HERMES TRD

Single Module Response

Which Hadron ($\pi, \mathrm{K}, \mathrm{p}$) is Which

 hadron/positron separation combining signals from: TRD, calorimeter, preshower
hadron separation

Dual radiator RICH for π, K, p

HERMES Recoil Detector timeline

> From 1996 through 2005 HERMES ran with the polarized H/D target.
\rightarrow November 2005 the ABS was removed.
> In January 2006 the recoil detector was installed.
$>$ February started data taking.
\rightarrow Scintillating fiber detector worked immediately.
> Full detector operations since September 2006.
\rightarrow 20M DIS in 2007
\rightarrow 20M DIS in 2006

- Recoil only for part of data.

Recoil Detector Overview

1 Tesla Superconducting Solenoid
Photon Detector
$\rightarrow 3$ layers of Tungsten/Scintillator
\rightarrow PID for higher momentum
\rightarrow detects $\Delta^{+} \rightarrow \mathrm{p} \pi^{0}$

Scintillating Fiber Detector
$\rightarrow 2$ Barrels
$\rightarrow 2$ Parallel- and 2 Stereo-Layers in each barrel
$\rightarrow 10^{\circ}$ Stereo Angle
\rightarrow Momentum reconstruction \& PID

Silicon Detector
$\rightarrow 16$ double-sides sensors
$\rightarrow 10 \times 10 \mathrm{~cm}^{2}$ active area each
$\rightarrow 2$ layers
\rightarrow Inside HERA vacuum
\rightarrow momentum reconstruction \& PID

Back to inclusive physics
Measuring g_{1}

How to measure cross section asymmetries
n省药

World Data on g_{1} / F_{1}

Proton

Data shown at measured $<Q^{2}>: 0.02-58 \mathrm{GeV}^{2}$

$$
\frac{g_{1}}{\mathrm{~F}_{1}}=\frac{1}{1+\gamma^{2}}\left[\frac{\mathrm{~A}_{\|}}{\mathrm{D}}+(\gamma+\eta) \mathrm{A}_{2}\right]
$$

Model-independent unfolding

$>$ detector smearing
$>$ QED radiative effects
smearing within acceptance

$$
\begin{aligned}
\mathrm{S}_{\mathrm{ij}} & =\frac{\partial \sigma^{\text {meas }}}{\partial \sigma^{\text {born }}}=\frac{\partial \mathrm{N}^{\text {meas }}}{\partial \mathrm{N}^{\text {born }}} \\
& =\frac{\mathrm{N}(i, j)_{\Leftarrow(\rightrightarrows)}^{\Leftarrow}}{\mathrm{N}^{\text {born }}(j)_{\rightleftarrows(\rightrightarrows)}}
\end{aligned}
$$

$>$ kinematic migration inside acceptance for each spin state $>\mathrm{j}=0$ bin: kinematic migration into the acceptance

radiative effects
> systematic correlations between bins fully unfolded $>$ resulting (small) statistical correlations known

World Data on $\mathrm{xg}_{1}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$

$$
>g_{1}^{p}>g_{1}^{d}>g_{1}^{3} \mathrm{He}
$$

$>$ Very precise proton data
> The most precise deuteron data $g_{1}^{d}=1 / 2\left(1-3 / 2 \mathrm{w}_{d}\right)\left(g_{1}^{p}+g_{1}^{n}\right)$
$>$ 0.021-0.9 measured range:
$\int g_{1}^{p}=0.1246 \pm 0.0032 \pm 0.0074$
$\int g_{1}^{d}=0.0452 \pm 0.0015 \pm 0.0017$

World data on g1

The cross section can be expressed as a convolution of a distribution function and a fragmentation function.

$$
\sigma^{\mathrm{ep} \rightarrow \mathrm{eh}} \sim \sum D F^{\mathrm{p} \rightarrow \mathrm{q}} \otimes \sigma^{\mathrm{eq} \rightarrow \mathrm{eq}} \otimes F F^{\mathrm{q} \rightarrow \mathrm{~h}}
$$

Fragmentation

Fragmentation

Fragmentation

Fragmentation

$0 \quad 06$

Fragmentation

Fragmentation

Fragmentation

Fragmentation

nermes

Fragmentation

$\mathrm{Z}=\frac{\mathrm{E}}{\mathrm{lab}} \mathrm{had}^{v}$

Fragmentation functions:
$F F^{q \rightarrow h}(Z) \begin{aligned} & \text { The probability that if a quark } q \text { was struck } \\ & \text { that a hadron } h \text { is formed with a fraction } z \text { of }\end{aligned}$ the energy of the virtual photon.

Fragmentation

$$
\begin{array}{cc}
\pi^{0} & \mathrm{p} \\
\Lambda_{\Lambda^{0}}^{0} & \\
\pi- \\
\Sigma-
\end{array}
$$

$>$ Normally lund string model is used to simulate the fragmentation process.

- Need to tune the model to the data.
$>$ The fragmentation process cannot be calculated

$$
\mathrm{Z}=\frac{\mathrm{lab}}{\mathrm{E}_{\mathrm{had}}} \underset{\mathrm{~V}}{ }
$$ theoretically.

Favored: struck quark is in the formed hadron

$$
\text { Favored } D_{u}^{\pi^{+}}\left(\mathrm{Z}, \mathrm{Q}^{2}\right){ }_{\text {J Stewart }}
$$

$$
\pi^{+}=u d
$$

Correlation between detected hadron and the struck quark allows flavor separation

Inclusive DIS $\rightarrow \Delta \Sigma$
Semi-inclusive $\rightarrow \Delta u, \Delta \bar{u}, \Delta d, \Delta \bar{d}, \Delta s$
$\mathrm{A}_{1}^{h}\left(x, \mathrm{Q}^{2}\right)=\frac{\sigma_{1 / 2}^{h}-\sigma_{3 / 2}^{h}}{\sigma_{1 / 2}^{h}+\sigma_{3 / 2}^{h}} \sim \frac{\sum_{f} e_{f}^{2} \Delta q_{f}\left(x, \mathrm{Q}^{2}\right) \int d z D_{f}^{h}\left(z, \mathrm{Q}^{2}\right)}{\sum_{f} e_{f}^{2} q_{f}\left(x, \mathrm{Q}^{2}\right) \int d z D_{f}^{h}\left(z, \mathrm{Q}^{2}\right)} \sim \sum_{f}^{\sum_{f} \frac{e_{f}^{2} q(x) \int d z D_{f}^{h}\left(z, \mathrm{Q}^{2}\right)}{\sum_{f^{\prime}, e^{\prime} e^{\prime} q_{f^{\prime}}(x) \int d z D_{f^{\prime}}^{h}\left(z, \mathrm{Q}^{2}\right)}} \frac{\Delta q(x)}{q(x)}} \begin{aligned} & P_{q}^{h}(x, z)\end{aligned}$ Linear System in \vec{Q}

$$
\begin{aligned}
& \vec{A}=\left(A_{1, p}(x), A_{1, d}(x), A_{1, p}^{\pi^{ \pm}}(x), A_{1, d}^{\pi^{ \pm}}(x), A_{1, d}^{K^{ \pm}}(x)\right) \\
& \vec{Q}=\left(\frac{\Delta u}{u}, \frac{\Delta d}{d}, \frac{\Delta \bar{u}}{\bar{u}}, \frac{\Delta \bar{d}}{\bar{d}}, \frac{\Delta s}{s}, \frac{\Delta \bar{s}}{\bar{s}}=0\right)
\end{aligned}
$$

$$
\vec{A}=P \vec{Q}
$$

The Measured Hadron Asymmetries PROTON

- DIS generator (LEPTO)
- Hadronisation (JETSET)
- Detector model
χ

Unpol. PDF $q\left(x, Q^{2}\right)$

Detector geometry

Meas. hadron multiplicities $N^{h} / N^{D I S}$

Polarized Sea

$>$ Unpolarized data on sea shows the Gottfried sum rule is broken

$$
\overline{\mathrm{d}}-\overline{\mathrm{u}}>0
$$

$>$ Reanalyze polarized data: Fit for $\vec{Q}=\left(\frac{\Delta \mathrm{u}}{\mathrm{u}}, \frac{\Delta \mathrm{d}}{\mathrm{d}}, \frac{\Delta \overline{\mathrm{u}}-\Delta \overline{\mathrm{d}}}{\overline{\mathrm{u}}-\overline{\mathrm{d}}}, \frac{\Delta \mathrm{s}}{\mathrm{s}}\right)$
>Polarized data favor a symmetric sea $\Delta \overline{\mathrm{d}}-\Delta \overline{\mathrm{u}}$,but large uncertainties

Hamburg, Germany

Measuring the spin structure of the proton

How do the quark and giluon constituents of the proton conspire to produce

SPIN $1 / 2$?

the spin of
the quarks inside

Only 30\% of the proton's spin is produced by the quarks

The Spin Puzzle

Leading order measurement using high pt hadrons
Indications
$\Delta \mathrm{G}$ small

Both transverse target data and GPDs sensitive to L

Distribution Functions

Leading Twist

> 3 distribution functions survive the integration over transverse quark momentum
unpolarized DF
$q(x)=\vec{q}(x)+\bar{q}(x)$
$\mathrm{F}_{1}(\mathrm{x})$

vector charge

Helicity DF

$$
\Delta q=\vec{q}(x)-\bar{q}(x)
$$

$$
\mathrm{g}_{1}(\mathrm{x})
$$

Transversity DF

$$
\delta q=q^{\uparrow}(x)-q^{\downarrow}(x)
$$

tensor charge

Quark
Correlation
Matrix

Properties of the Transversity DFs

$>$ For non-relativistic quarks $\delta q(x)=\Delta q(x)$
$\rightarrow \delta q(x)$ probes the relativistic nature of the quarks
$>$ Due to Angular Momentum Conservation
\rightarrow Different QCD evolution
\rightarrow No gluon component
$>\delta \Sigma(x)=\sum_{q}[\delta q(x)-\delta \bar{q}(x)]$
\rightarrow Predominately sensitive to valence quarks
$>$ Bounds

- $|\delta q(x)| \leq q(x)$
- Soffer Bound: $|\delta q(x)| \leq[q(x)+\Delta q(x)]$
$>$ T-even
$>$ Chiral odd
\rightarrow Not measurable in inclusive DIS

Measuring Transversity
 $$
\sigma^{\mathrm{ep} \rightarrow \mathrm{eh}} \sim \sum_{\mathrm{q}} D F^{\mathrm{p} \rightarrow \mathrm{q}} \otimes \sigma^{\mathrm{eq} \rightarrow \mathrm{eq}} \otimes F F^{\mathrm{q} \rightarrow \mathrm{~h}}
$$

＞Need a chiral odd fragmentation function： ＇Collins FF＇
$>$ Transverse quark polarization affects transverse

Azimuthal angles and asymmetries

$\pi+\left(\varphi_{h}-\varphi_{S}\right)$
$\left(\varphi_{h}+\varphi_{S}\right) \begin{gathered}\text { final quark spin (Collins) }\end{gathered}$
$\left(\varphi_{h}-\varphi_{S}\right) \begin{aligned} & \text { angle of hadron relative to } \\ & \text { initial quark spin (Sivers) }\end{aligned}$

Quark photon interaction preserves spin component out of plane and reverses component in plane

$$
\alpha=\alpha
$$

$$
A_{\text {coll }} \propto h_{1}(x) H_{1}^{\perp}(z)
$$

$$
A_{S i v e r s} \propto f_{1 T}^{\perp}(x) D_{1}(z)
$$

Sivers Function $f_{1 T}^{\perp(1 / 2)}$

$$
\sigma^{\mathrm{ep} \rightarrow \mathrm{eh}} \sim \sum_{\mathrm{q}} D F^{\mathrm{p} \rightarrow \mathrm{q}} \otimes \sigma^{\mathrm{eq} \rightarrow \mathrm{eq}} \otimes F F^{\mathrm{q} \rightarrow \mathrm{~h}}
$$

> Distribution function
\rightarrow Naïve T-ODD

$$
\mathrm{A}_{\mathrm{UT}} \sim \sin \left(\phi_{h}-\phi_{S}\right) \sum_{q} e_{q}^{2} f_{1 T}^{\perp(1 / 2)}(x) D_{1}^{q}(z)
$$

\rightarrow Chiral even
> a remnant of the quark transverse momentum can survive the photo-absorption and the fragmentation process
> Can be inherited in the transverse momentum component
\rightarrow influence azimuthal distribution
> Non-vanishing Sivers function requires quark orbital angular momentum
> Cross section depends on the angle between the target spin direction and the hadron production plane

Single target-spin asymmetry

Sivers moments

$A_{\text {Sivers }} \propto f_{1 T}^{\perp}(x) D_{1}(z)$

- Sivers moment:

$$
\pi^{+}>0 \quad \pi^{-} \sim 0
$$

- $\mathrm{K}^{+}>0$
$K^{-} \sim 0$
$\mathrm{K}^{+}>\pi^{+}$
- sea quarks important
- non-zero orbital angular momentum in p-wave fct. $\Rightarrow L_{q}$??

Collins moments

$$
A_{\text {coll }} \propto h_{1}(x) H_{1}^{\perp}(z)
$$

- Collins moment:

$$
\pi^{+}>0 \quad \pi^{-}<0
$$

$-\pi^{-}$unexpected large
\Rightarrow role of unfavoured FF

$$
H_{\text {fav }}=-H_{\text {unfav }}
$$

- first data for Collins-FF available from Belle
- extraction of h_{1} from Hermes asymmetries
- $\mathrm{K}^{+}>0 \quad \mathrm{~K}^{-}>0$
K^{+}and π^{+}consistent with u-quark dominance
- K- and π^{-}
complicated sea quark contr.

Generalized Parton Distributions

Analysis of hard exclusive processes leads to a new class of parton distributions

Cleanest example: Deeply Virtual Compton scattering

\boldsymbol{x} : average quark momentum frac ${ }^{\text {n }}$
ξ : "skewing parameter" $=x_{1}-x_{2}$
4. 1 mamantiom tronofar2

Four new distributions = "GPDs"
helicity conserving $\rightarrow H(x, \xi, t), E(x, \xi, t)$ helicity flip $\rightarrow \tilde{H}(x, \xi, t), \tilde{E}(x, \xi, t)$
"Femto-photography" of the proton Fourier transform of t-dependence ...

spatial distribution of partons

Summary

$>$ Quark helicity distributions are now well measured.
\rightarrow Inclusive using NLO fits (sea assumption)
\rightarrow Semi-inclusive data using flavor tagging
$>$ Gluon polarization extracted using leading order extraction from high pt hadrons.
$>$ Transversity data now being analyzed. Clear signal is seen.
$>$ Large DVCS data set collected for the GPD determination.
$>$ First steps toward understanding angular momentum.

