Research with Synchrotron Radiation

Part I

Ralf Röhlsberger

- Generation and properties of synchrotron radiation
- Radiation sources at DESY

Synchrotron Radiation Sources at DESY

How to generate synchrotron radiation?

Generation of electromagnetic waves

Electric and magnetic fields around an oscillating electric dipole

First Halfperiod: E- and B-fields propagate into space

Second Halfperiod:

Change of sign, the outer fields decouple and propagate freely.

Field lines around an oscillating electric dipole

Radiation characteristic of a Hertz dipole

Every accelerated charge radiates electromagnetic waves

Radiated power

$$P = \frac{e^2}{6\pi\varepsilon_0 m^2 c^3} \left(\frac{d\vec{p}}{dt}\right)^2$$

Larmor formula

Oscillatory motion: No radiation in direction of the oscillation.

Maximum radiated power perpendicular to the oscillation direction: Circular acceleration: Generation of Synchrotron Radiation

Radiated power of an accelerated charged particle for nonrelativistic particles: Larmor formula

$$P_S = \frac{e^2}{6\pi \epsilon_0 \, m_0^2 \, c^3} \, \left| \frac{d\vec{p}}{dt} \right|^2$$

Lorentz transformation and application to circular acceleration:

$$P_S = \frac{e^2 c}{6\pi \epsilon_0} \frac{1}{(m_0 c^2)^4} \frac{E^4}{R^2}$$

E = particle energyR = radius of curvature $m_0 = particle mass$

Dependence on particle mass:

$$\frac{P_{S,e}}{P_{S,p}} = \left(\frac{m_p}{m_e}\right)^4 \approx 10^{13}$$

Synchrotron radiation is only for <u>electrons/positrons</u> sufficiently intense

Emission pattern for circular accelaration

Emission pattern

$$E = 5 \,\text{GeV}$$

$$\implies \gamma = 10^4$$

$$\implies \Delta \Theta = \frac{2}{\gamma} = 0.2 \,\text{mrad} \approx 40''$$

The radiation is emitted in the plane of the orbiting particles

The radiation is linearly polarized in the orbit plane

Pulse duration and energy spectrum

Storage ring and Beamlines.

Synchrotron radiation facilities around the world

Parameters of selected facilities

Storage Ring, Location	Particle Energy [GeV]	Circum- ference [m]	Orbit Period [µs]	Bucket Separat. [ns]	Bunch Length [ps]
ESRF, Grenoble, France	6.0	844	2.816	2.84	70
APS, Argonne, USA	7.0	1104	3.683	2.84	60
SPring8, Japan	8.0	1436	4.790	1.97	100
PETRA II, Hamburg	12.0	2304	7.680	2.00	100

European Synchrotron Radiation Facility (ESRF), Grenoble,France

Insertion devices: Wigglers and undulators

Electrons travelling through periodic magnet structures (insertion devices) :

Wiggler at DORIS III

Insertion devices: Wigglers and Undulators (1)

Undulator regime: $\alpha < 1/\gamma$

In the undulator regime the radiation cones overlap and the wave trains can interfere constructively

Insertion devices: Wigglers and Undulators (2)

$$\alpha = \frac{K}{\gamma}$$
 K: deflection parameter

$$K = 0.934 \,\lambda_u(\text{cm}) \,B_0(\text{T})$$

 λ_u : magnetic period B_0 : magnetic field at orbit

K determines the shape of the energy spectrum of an insertion device:

Energy of the n^{th} harmonic:

$$E_n({\rm keV}) = n \, \frac{0.95 \, E^2({\rm GeV})}{\lambda_u({\rm cm})(1+K^2/2)}$$

Angular width of n^{th} harmonic:

How to characterize the properties of a synchrotron radiation source ?

Brilliance is the figure of merit for the design of new synchrotron radiation sources

Intensity of the emitted radiation

 N_p = Number of magnet poles

 N_e = Number of electrons/bunch

Incoherent superposition

$$I \sim N_e N_p$$

Partially coherent superposition

$$I \sim N_e N_p^2$$

Fully coherent superposition

$$I \sim N_e^2 N_p^2$$

Self-Amplified Stimulated Emission (SASE)

Evolution of Brilliance

(SRS = Synchrotron Radiation Source)

1st generation: Exploitation of the light from the bending magnets of e+/ecolliders originally built for elementary particle physics

2nd generation: Radiation from bending magnets and introduction of first insertion devices, lower e-beam emittance, optimization of light extraction

3rd generation: dedicated storage rings, very low e-beam emittance, brilliance is figure of merit, mainly undulators, long straight sections

Time structure of synchrotron radiation (1)

Example: European Synchrotron Radiation Facility (ESRF)

rf-cavities in the ring provide the electric field to accelerate the electrons to compensate for the radiation losses

 v_{rf} = 352 MHz

This means:

992 buckets of stable phase for the electrons, separated by 2.84 ns

A bucket filled with electrons is called a bunch

Time structure of synchrotron radiation (2)

Various filling modi can be realized depending on the experimental needs:

Summary: Properties of synchrotron radiation

Properties:

- high brilliance and flux
- infrared up to hard X-rays (>100keV)
- polarization
- time structure

Applications:

- spectroscopy
- diffraction/scattering
- imaging

Fields:

- solid state physics
- crystallography
- structural biology
- chemistry/catalysis
- geo-/environmental science
- materials science, nano science
- medical science
- atoms, molecules and clusters
- magnetism
- engineering science

Comparison of power densities

Sunlight on earth: P_{sol} = 1 kW/m²

Synchrotron radiation behind undulator:

 P_{SR} = 8000 MW/m²

An intense beam of synchrotron radiation in air

20 - 100 µm

Photon Facilities at DESY

XFEL

FLASH

FLASH PETRA III **XFEL** HASYLAB innin DORIS II LINAC II DESY III PIA DESY I PETRA II LINAC

PETRA II/III

DORIS III

38 beamlines, **70** experimental stations

11 Stations operated by external organizations:

- EMBL: 7
- MPG: 1
- GKSS: 1
- GFZ: 2
- 16 stations operated with support from external institutions:
 - BMBF-Verbundforschung
 - FZ Jülich
 - University Hamburg
 - University Kiel
 - University Aachen
 - Debye Inst. Utrecht
 - RISØ
 - MPI Golm

http://petra3.desy.de

PETRA III construction site, 2.8.2007, 9:52

ID-sectors

23 m

Canted undulators beam separation 5 mrad

FLASH (Free-electron Laser in Hamburg)

Start of user Operation: 2005

superconducting linac: 1 GeV minimal wavelength: 6nm five experimental platforms with different focal spots/optics

Production and assembly of superconducting cavities for FLASH

FLASH experimental hall

XFEL: The European X-ray Free-Electron Laser

Linac: 20GeV min. wavelength: ~1Å photons per pulse: ~10¹² pulse length: ~100fs

2100 m

- 2 X-ray SASE FELs,
- **1 SASE XUV-FELs, and**
- 2 beamlines for short pulse physics using spontaneous radiation
- **10** experimental stations

XFEL Accelerator Tunnel

XFEL Site Schenefeld

Experimental hall of the European X-ray FEL Project

DESY site: Injector complex, infra-structure

