Part III

Interaction of Photons with Matter

- Scintillators
- · Photodetectors
- · Cherenkov detectors
- · Transition radiation detectors
- · Calorimeters
- shower development
- electromagnetic calorimeters
- hadronic calorimeters

Detectors for Particle Physics: 3

carsten.niebuhr@desy.de

Intensity Attenuation

1

• Intensity attenuation: $I(x) = I_0 \cdot \exp(-\mu x)$,

with mass absorption coefficient $\mu = \frac{N_A \cdot \sigma}{A}$ [cm⁻¹] strongly energy dependent

 $\cdot\,$ connection between radiation length and high energy limit for pair production:

$$\sigma|_{E \gg 1 \text{ GeV}} = \frac{7}{9} 4 \alpha r_e^2 Z^2 \ln \frac{183}{Z^{1/3}} \approx \frac{7}{9} \cdot \frac{A}{N_A} \cdot \frac{1}{X_0}$$

 $\Rightarrow I(x) = I_0 \cdot \exp\left(-\frac{7}{9}\frac{x}{X_0}\right) \text{ probability for pair production after}$ traversing one X₀ is ~54%.

Photon Absorption Length

4

Scintillation Detectors

Inorganic Crystals

Phenomenon of scintillation known since long. Extensive use only after invention of photomultiplier in 1944. Since then significant development of this technology.

Advantage for detection of particles and photons:

- simplicity and robustness
- signal speed
- · high density \rightarrow large signals \Rightarrow good time and energy measurement

light guide photo detector

Now also scintillating fibres available \Rightarrow position resolution as well

There are different mechanisms in:

- · anorganic crystals
- organic substances

Example: Sodium-Iodide

- NaI insulator with bandgap of 7eV
- \cdot replace $\approx 0.1\%$ of sodium atoms with socalled activators: thallium atoms \Rightarrow
- shift of light energy into visible regime: (advantageous for detection via photo cathode)
- enhanced light yield
- reduced re-absorption
- · exciton creation by charged particles
- · excitons move in crystal until they reach activator
- · energy release by photon emission (3eV $\Rightarrow \lambda \approx$ 400nm)
- for this wavelength the material is transparent
- · decay time $\tau \approx 230$ ns

Detectors for Particle Physics: 3

Detectors for Particle Physics: 3 5

Organic Scintillators

Mechanism

- · Excited vibrational modes of molecules de-excite by emission of UV light.
- This UV light is then transformed into visible light by so called wave length shifters that are added to the material.

Mono crystals

- Napthalen (C10H8)
- Anthrazen $(C_{10}H_{10})$
- p-Terphenyl ($C_{58}H_{14}$)

Liquid- and plastic- scintillators

- consist of organic substance (polystyrol) plus scint. molecules (≈1%)
- in addition: secondary fluor compounds as wavelength shifters

Absorption Fluorescence

(Fast)

Organic versus Inorganic Scintillators

6

	Typ	$N_{\gamma}/{ m keV}$	$ au/\mathrm{ns}$	λ/nm	$X_0/{ m cm}$
Enorganic	NaI (Tl)	40	230	410	2.6
	BGO	3	350	480	1.1
	CeF	5	5,20	300, 340	1.7
	Anthrazen	17	30	450	30
Organic	NE110 (fest)	10	3.3	430	40
	NE216 (flüssig)	13	3.5	430	50

Inorganic crystals

• well suited for calorimetric applications (high light yield and small radiation length)

Plastic scintillators

fast particle registration (trigger)

7

carsten.niebuhr@desv.de

carsten.niebuhr@desv.de

Scintillation Detectors

Light Collection

Phenomenon of scintillation known since long. Extensive use only after invention of photomultiplier in 1944. Since then significant development of this technology.

Advantage for detection of particles and photons:

- simplicity and robustness
- signal speed
- high density → large signals
 ⇒ good time and energy measurement

Now also scintillating fibres available \Rightarrow \cdot position resolution as well

There are different mechanisms in:

- anorganic crystals
- organic substances

Scintillation Detectors

9

Phenomenon of scintillation known since long. Extensive use only after invention of photomultiplier in 1944. Since then significant development of this technology.

Advantage for detection of particles and photons:

- simplicity and robustness
- signal speed

Detectors for Particle Physics: 3

• high density \rightarrow large signals \Rightarrow good time and energy measurement

Now also scintillating fibres available \Rightarrow

position resolution as well

There are different mechanisms in:

- anorganic crystals
- organic substances

carsten.niebuhr@desv.de

Conversion of Scintillation Light

Scintillation light must be converted into electrical signal .

Requirement

high sensitivity, i.e. high "quantum efficiency": Q.E. = N_{photoelectrons} / N_{photon}

Commonly used photo detectors

- \cdot gas based systems
- e.g. RICH detectors
- vacuum based systems
- photomultiplier
- solid state detectors
 photodiodes etc.

Photomultiplier

Avalanche Photo Diode: APD

O Vbias Si^{*} Resistor Al - conductor n* Guard P ring n D D Depletion region Substrate p⁺ i (#) p* Substrate - 500 - 5000 mm⁻²

Silicon Photomultiplier

- Array of Avalanche Photodiodes
 - operates in Geiger mode
 - Gain ≈10⁶
 - low operating voltage
 - works in magnetic field
 - small dimensions
 - relatively cheap -> large quantities 16

Detectors for Particle Physics: 3

15

PHOTO-SENSITIVE AREA

Detectors for Particle Physics: 3

Comparison of Photo Detectors

	PMT	APD	HPD	SiPM
Photon				
detection				
efficiency:				
blue	20%	50%	20%	12%
green - yel-	a few %	60-70%	a few %	15%
low				
red	<1%	80%	<1%	15%
Gain	$10^{6} - 10^{7}$	100-200	10^{3}	10^{6}
High voltage	1-2 kV	100-500 V	20 kV	25 V
Operation in	problematic	ОК	ок	OK
the magnetic				
field				
Threshold	1 ph.e.	~ 10 ph.e.	1 ph.e.	1 ph.e.
sensitivity				
$S/N \gg 1$				
Timing /10	$\sim 100 \text{ ps}$	a few ns	$\sim 100 \text{ ps}$	30 ps
ph.e.				
Dynamic	$\sim 10^{6}$	large	large	$\sim 10^3 / \mathrm{mm}^2$
range				
Complexity	high (vac-	medium	very high	relatively
	uum, HV)	(low noise	(hybrid	low
	, ,	electronics)	technology,	
			very HV)	
		17		

Cherenkov Radiation

Photon Yield

Cherenkov Angle

Detectors for Particle Physic

carsten.niebuhr@desv.de

Ring Imaging Cherenkov Counter: RICH

detector surface spherical mirror radiating medium particle Hermes RICH detector 3870 PMTs, Philips [rad] -XP1911/UV, Ø 3/4" + light funnels θ particle identification 3D view of one half detector Double radiator Са 1.2.5 m Box C₄F₁₀ gas Aerogel p [GeV] Detectors for Particle Physics: 3 carsten.niebuhr@desv.de 21

Transition Radiation Detectors

TR hits characterised by: large amplitude occur preferentially at start of the track

Application: distinguish high energetic electrons from pions discrimination possible for momenta from about 1 GeV/c to ~100 GeV/c

Transistion Radiation

Use of Transition Radiation Detectors at LHC

0

0

Intermediate Summary

Scintillators

- inorganic crystals (NaI, CsI, BGO, PbWO₄, ...)
- energy loss by ionisation \rightarrow transfer to luminiscent centers \rightarrow radiate photons
- high light yield, small radiation length \rightarrow calorimeters
- organic (polystyrene, polyvinyltoluene, ...)
- molecules get excited \rightarrow energy released as optical photons \rightarrow Fluors act as wavelength shifter
- lower light yield, but faster signals \rightarrow trigger counters

Conversion of Scintillation Light

- photo multiplier
- · solid-state photon detectors (APD, HPD, SiPM, ...)

Energy loss processes other than ionisation (used for particle identification)

· Cherenkov radiation

- threshold effect $\beta_{thr} = n^{-1}$, if particle moves faster than light in medium; but small light yield

- Transition radiation
- fast particles radiate if they cross boundaries \rightarrow sensitivity to γ ; but small light yield

Detectors for Particle Physics: 3

25

Energy Loss of Electrons

In addition to energy loss by ionisation high energy particles also loose energy due to interaction with the Coulomb field of the nuclei: Bremsstrahlung

Due to their small mass this effect is especially prominent for electrons (positrons):

 $\cdot - dE/dx \propto Z^2 \cdot E/m^2$

 \cdot it is useful to introduce radiation length X_0

• energy attenuation:
$$E = E_0 \exp\left(\frac{-x}{X_0}\right)$$

• approx.:
$$X_0 = \frac{716 \text{g cm}^{-2} A}{Z(Z+1) \ln(287/\sqrt{Z})}$$

· critical energy
$$E_c$$
:

$$\frac{dE_{Brems}}{dx} = \frac{dE_{collision}}{dx}$$
• approximately: $E_c = \frac{610 \text{MeV}}{7 + 124}$

Why do we need Calorimeters ?

 σ/F

0.1

0.01

0.1

elektromagn

Kal

Pb-Glas

NaJ(T1)

Recall: for tracking in magnetic field we have

 $\cdot \frac{\sigma(p_T)}{p_T} \propto \frac{p_T}{L^2}$

- momentum (energy) measurement degrades linearly with increasing energy
- · size of detector $L \propto \sqrt{E}$
- only detection of charged particles

In contrast (as we will see) for calorimeters:

 $\cdot \frac{\sigma(E)}{E} \propto \frac{1}{\sqrt{E}}$

- detection of
- photons and electrons
- neutral hadrons

Detectors for Particle Physics: 3	26	carsten.niebuhr@desy.de

Electromagnetic Shower Development

Interaction of photons and electrons above 10 MeV dominated by

- pairproduction $\gamma \rightarrow e^+e^-$
- Bremsstrahlung $e^{\pm} \rightarrow e^{\pm} \gamma$

which are both characterised by X_0 . Alternating sequence leads to shower which stops if energy of particles $\langle E_c$.

hadr. calorimeter

Hadron-Kal.

10

tracker

Magn.Spekt

E [GeV]

- assume symmetric energy sharing $E_e = E_y/2$
- e^+e^- radiate photon after $\approx 1 X_0 E_{\gamma} = E_e/2$
- $\cdot \Rightarrow$ number of particles at depth $t = x/X_0$:

$$N(t) = 2^t$$
 with energy $E(t) = E_0 \cdot 2^{-t}$

multiplication continues until energy falls below critical energy: $E_c = E_0 \cdot 2^{-t_{MAX}}$

from then on shower particles are only absorbed Position of shower maximum:

$$t_{MAX} = \frac{\ln E_0 / E_c}{\ln 2} \propto \ln E_0$$

carsten.niebuhr@desy.de

Simple model for shower development initiated by photon of energy $E_0 = E_y$:

• within $\approx 1 X_0$ y produces e^+e^- pair

Shower Depth versus Energy

140 10 GeV 120 100 GeV 100 80 60 40 20 25 z/X₀ 20 0 5 10 15 typical range of depth for EM calorimeter

Detectors for Particle Physics: 3

carsten.niebuhr@desv.de

Stochastic Fluctuations

29

- Number of particles at shower maximum increases linearly with initial energy: $N_{MAX} = N(t_{MAX}) = E_0/E_c$
- Total number of particles in the shower $N_{tat} \propto N_{MAX} = E_0/E_c$
- If response of calorimeter is proportional to number of shower particles it acts as a linear device for energy measurements
- Even for a perfect detector there are intrinsic statistical limitations for the energy resolution:
- total track length $T \propto N_{tot} \cdot X_0 \propto \frac{E_0}{E_0} \cdot X_0$
- detectable track length $T_{det} = F(\xi) \cdot T$ with $\xi = E_{cut}/E_c$ [above energy threshold E_{cut}]

Multiple scattering of the e[±] causes a broadening of the shower also in the transverse direction;

- contribution from electrons with $E \cong E_c$ dominates
- $\cdot \Rightarrow$ the shower width can be characterized by the so-called

Moliere-Radius $R_M = \frac{21 \text{MeV}}{F} X_0$

 meaning: 90(95)% of shower energy is contained in cylinder with radius RM $(2R_M)$ around the shower axis

Shower Containment:

D

- transverse: $R_{95\%} = 2R_M$
- Example lead glass: $R_M = 1.8X_0$ 3.6 cm $\Rightarrow R_{95\%}$ 7 cm
- longitudinal: $L_{95\%} = t_{MAX} + 0.08 \cdot Z + 9.6 [X_0]$ [with $t_{MAX} = \ln(E_0/E_c)/(\ln 2)$]

In general the energy resolution of a calorimeter can be parametrised as:

- Example: 100 GeV e- in lead glass $(E_c=11.8 \text{ MeV} \Rightarrow t_{MAX} - 13, L_{95\%} - 23)$

30	carsten.niebuhr@desy.d
	30

energy deposit arbitrary units] 10

Energy Resolution of Calorimeters

 $\frac{dN}{dt} \propto t^{\alpha} \cdot e^{-\beta t}$

2 4 6 8 10 12 14 16

lateral shower width [X₀]

- electronic noise
- radioactivity

Calorimeter Types

Examples of Sampling Calorimeters

Homogeneous calorimeters:

· detector = absorber

Detectors for Particle Physics: 3

- good energy resolution
- limited spatial resolution (particularly in longitudinal direction)
- only used for electromagnetic calorimetry

- Sampling calorimeters:
- detectors and absorber are separated \Rightarrow only fraction of the energy is sampled
- · heavy absorber material: compact design
- energy resolution limited by sampling fluctuations
- good spatial resolution due to segmentation
- can be used for electromagnetic and hadronic calorimetry

Comparison of various Electromagnetic Calorimeters

33

Hadronic Interactions

For high energies the hadronic cross section is
≈ constant as function of energy
≈ independent of hadron type
Material dependence of total cross section is given

by: $\sigma_A = \sigma_p \cdot A^{2/3}$

 $\Rightarrow Characterize hadronic interactions by hadronic interaction length \tilde{\lambda}_{I} = \frac{A}{N \alpha + \beta} \quad [cm]$

[in table:
$$\lambda_I = \tilde{\lambda}_I \cdot \rho \propto A^{1/3}$$
 [g/cm²]]

carsten.niebuhr@desv.de

Hadron Calorimeters

Examples of Calorimeters

Experiment	Kind	Absorber	Active material	Resolution	Туре
ZEUS	em	Uranium	Scintillator	18% / √E	sampling
ZEUS	had	Uranium	Scintillator	35% / √E	sampling
H1	em	Pb	LAr	12% / √E	sampling
H1	had	Steel	LAr	50% / √E	sampling
H1 SpaCal	em	Pb	Scintill. Fibre	7.5% / √E	sampling
NA48	em	LKr	LKr	3.5% / √E	homogeneous
BaBar	em	Csl	Csl	2.3% / E ^{1/4}	homogeneous
ATLAS	em	Pb (Cu)	LAr	10% / √E	sampling
ATLAS	had	Iron (Cu)	Scintillator	47% / √E	sampling
CMS	em	PbWO ₄	PbWO ₄	4% / √E	homogeneous
CMS	had	Brass	Scintillator	115% / √E	sampling

Compensation

Problem

- \cdot the fraction of the different components fluctuate significantly
- · the signal response of electromagnetic and hadronic component are in general different i.e. $\epsilon_{em} \neq \epsilon_{had}$
- for good performance one needs to compensate for this effect. Two possibilities:
- hardware compensation
- careful choice of absorber & active material and their thickness
- increase ϵ_{had} : Uranium [neutrons and soft γ : fission] or increase neutron eff. w/ hydrogenous comp.
- decrease ϵ_{em} : reduce sensitivity to low-energy γ by using high Z absorber and low Z detector
- example: ZEUS calorimeter: Uranium (depleted) / scintillator [3.3/2.6 mm]
- software compensation
- if readout granularity of detector is sufficiently high one can distinguish between electromagnetic and hadronic component and correct by software weighting
- example: H1 calorimeter: liquid argon (LAr) with steel [≈ 45000 cells]
- \cdot due to the large intrinsic fluctuations hadronic calorimeters in general have worse resolution compared to electromagnetic calorimeters \rightarrow typical values:

$$\frac{\sigma(E)}{E} \propto \frac{35 - 50 \%}{\sqrt{E}}$$

Detectors for Particle Physics: 3

38

carsten.niebuhr@desy.de

LHC Calorimeters under Construction

Calorimeter R&D for ILC @ DESY

- At Linear Collider expect final states with heavy bosons: W, Z, H
- · Have to reconstruct their hadronic decay modes \rightarrow multijet events
- Challenge: need jet resolution of 30% / √E
- Expect ~60% of total energy in charged particles (tracker), 20% in photons (ECAL), 10% in neutral hadrons (HCAL) and 10% in neutrinos \Rightarrow new concept of particle flow:
- reconstruction of individual particles
- separation of particles (charged and neutral)

Detector requirements:

- excellent tracking, in particular in dense jets
- excellent granularity in the ECAL
- "no" material in front of ECAL
- good granularity in the HCAL
- excellent linking between tracker ECAL HCAL
- excellent hermeticity

Detectors for Particle Physics: 3

Prototype tests ongoing at CERN

carsten.niebuhr@desv.de

Summary on Calorimeters

High energy particles develop showers:

- e, $\gamma \rightarrow$ electromagetic showers, relevant quantities: E_{α} , X_{0} shower development:
- longitudinal $t_{max} \propto \log E$
- transverse Moliere Radius
- hadrons (π , n, p, ...) \rightarrow hadronic showers, characteristic quantity: λ_{I}
 - shower development much more complicated than in em case

Many effects contribute to energy resolution

 $\propto \frac{1}{\sqrt{F}}$ · dominant dependence from stochastic fluctuations:

- $\cdot \Rightarrow$ calorimeters complementary to tracking detectors
- typical resolutions

- electromagnetic:
$$\frac{\sigma}{E} \approx \frac{4 - 10\%}{\sqrt{E}}$$
; hadronic: $\frac{\sigma}{E} \approx \frac{35 - 50\%}{\sqrt{E}}$

Detectors for Particle Physics: 3

42

carsten.niebuhr@desv.de

41

Example CMS

Interactive graphics at: http://cmsinfo.cern.ch/outreach/CMSdocuments/DetectorDrawings/Slice/CMS_Slice.swf