Joachim Mnich DESY

Physics at

(Anti)Proton-Proton

Colliders

August 28th, 2007

August 28, 2007

Outline:

- Reminder particle physics
- Proton versus electron collider
- Tevatron and LHC
- Physics at proton colliders
- LHC experiments
- Standard Model physics
- Higgs searches

August 28, 2007

- New phenomena (e.g. SUSY)

Introduction

- Are quarks and leptons really elementary?
 e.g. structureless, pointlike objects?
- Why are there 3 families?
- Are there additional forces and gauge bosons?
- What is the origin of the matter-antimatter asymmetry in the universe? What is the origin of CP violation?

Today's Questions and Problems

• What is dark matter ($\approx 20\%$ of the universe) and dark energy ($\approx 75\%$)?

- Answers to these questions need
 - experiments at high energy
 - and with high precision

August 28, 2007

Discoveries

- Increase collision energy to explore TeV region

Future

- explore the allowed Higgs mass range
- search for Supersymmetry
- and other new physics phenomena
- be prepared for the unexpected

→LHC

Precision measurements and tests of the SM

- measure SM parameters m_W, m_t
- measure properties of new particles (Higgs, SUSY)
- and check consistency of the model

\rightarrow LHC & ILC

August 28, 2007

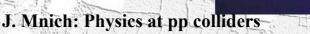
Why a proton collider like the LHC? e⁺e⁻ machines like LEP are ideal machines for precision emasurements:

Proton Collider

ALEPH

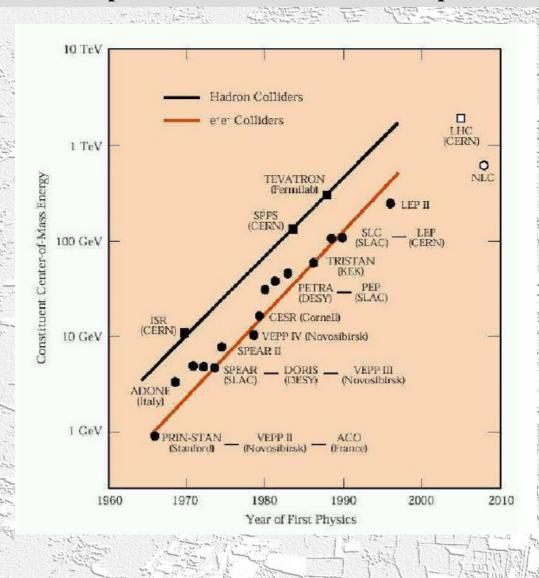
e⁺e⁻

H+X


- e⁺/e- are point-like, no substructure
 - \rightarrow very clean events
- centre-of-mass system
- event kinematics completely fixed

Events at proton collider are much more complex:

- protons are not elementary
- hard scattering of partons (quarks & gluons)
- underlying event


August 28, 2007

- use only part of the beam energy
- event kinematics only partially constraint

Comparison of past and future electron and proton colliders:

History of Colliders

August 28, 2007

The Tevatron Collider at Fermilab

Proton-Antiproton Collider

- 1992 1996
 Run I with 2 experiments
 CDF and D0
 √s = 1.8 TeV
 ∫Ldt = 125 pb-1
- **1996 2001 Upgrade**
 - new injector, antiproton recycler
 - \rightarrow higher luminosity
 - detector improvements

• since March 2001 Run II, $\sqrt{s} = 1.96$ TeV

August 28, 2007

Both experiments are running collecting & analysing data

Experiments at the Tevatron

- Upgrades for Run II: - tracking system
 - large Si-strip detector
- forward calorimeter
- trigger and DAQ systems

The CDF detector

\approx 700 physicists

August 28, 2007

Experiments at the Tevatron

The D0 detector

institutes from 19 countries ≈ 700 physicists

- **Upgrades for Run II:**
- inner detector
- magnetic field
- forward muon
- trigger and DAQ systems

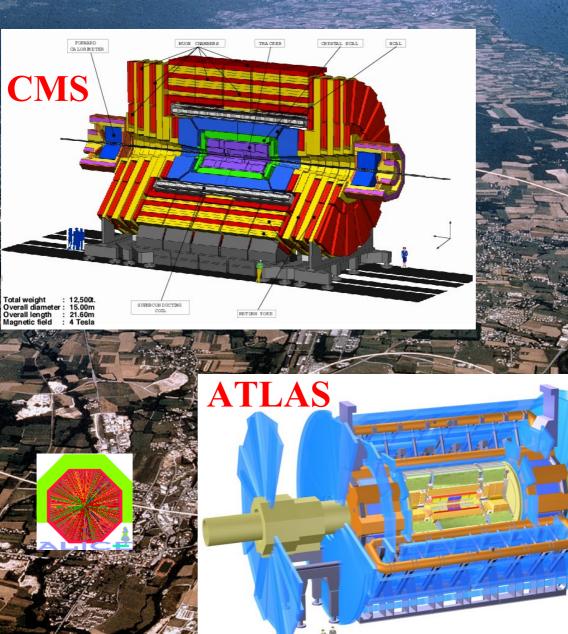
The Large Hadron Collider (LHC) at CERN

 Proton-proton collider in the former LEP tunnel at CERN (Geneva)

 Highest ever energy per collision 14 TeV in the pp-system

States - Andres -

- Conditions as 10⁻¹³ 10⁻¹⁴ s after the Big Bang
- 4 experiments:
 - ATLAS


CMS

- LHC-B specialised on b-physics
- ALICE specialised for heavy ion collisons
- Constructed in a worldwide collaboration
- Start planned for 2008

August 28, 2007

The Large Hadron Collider LHC

LHCD THCP

Challenges for the LHC

 Superconducting dipole magnets to keep 7 TeV protons on circular path (r ≈ 3 km)

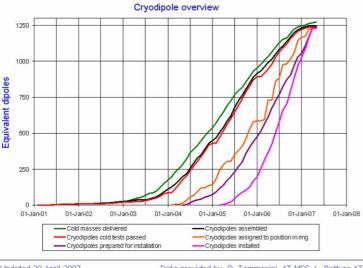
|B| = 8.33 Tesla

- 1232 dipole magnets are needed (+ quadrupole, sextupoles etc.) each dipole is 15 m long
- 1.9 K operating temperature supraliquid He largest cyrogenic facility in the world
- Quench protection stored energy in one dipole: 8 MJ

August 28, 2007

LHC dipole design incoporates reversed field for oppositely rotating proton beam

BTW:

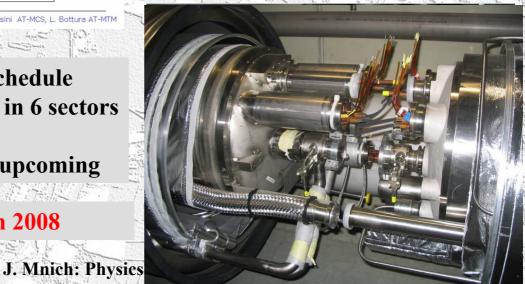

the stored energy in the LHC proton beams is 350 MJ enough to melt 500 kg of copper!

Status of the LHC

Technolog

• Example dipoles: all 1232 dipoles built and installed

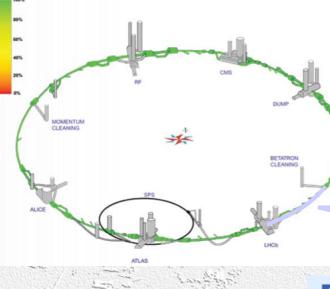
Undated 30 Apri


- All magnets prepared on schedule
- Interconnections on-going in 6 sectors
 - sector 7-8 ready
 - closure of 4-5 and 8-1 upcoming - 岡田 村本 記書会 王子子 日間子

LHC schedule: first beam in 2008

August 28, 2007

Last dipole lowered on April 26, 2007



13

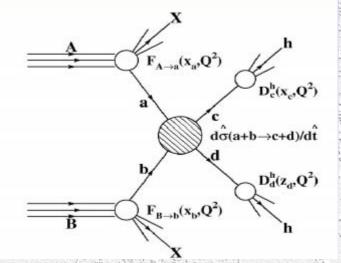
Status of the LHC

sector 7-8

Cryogenics complete

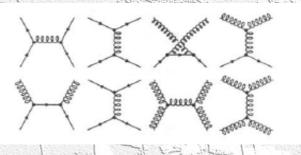
First cooldown April 2007:

I.9 K: The coldest place in the universe!


Ø LHC sector 78 - First cooldown - Tuning 1.9 K conditions 6.5 4.5 K refrigerator supply temperature 6.0 (before expansion valve) 5.5 5.0 ation of cold compressor driving system switch of 4.5 K refrigerator Δ Magnet average and 1.8 K refrigeration unit emperature 4.0temperature oling stops due to relay default, cooling stop due to 3.5 coling stop due to cold compressor then lost of communication UPS system fault 3.0 friving system fault network and cooling water stop 2.5 2.0 1.8 K refrigeration unit supply temperature 1.5 Arc 78 magnets below 2K (equivalent saturation temperature) Time (UTC) 1.0 02/04/07 06/04/07 10/04/07 14/04/07 18/04/07 22/04/07 26/04/07 30/04/07 04/05/07 08/05/07 06:00 06:00 06:00 06:00 06:00 06:00 06:00 06:00 06:00 06:00 — 4.5 K refrigerator supply temperature — 1.8 K refrigeration unit cooling temperature

Magnet temperature (average over sector)

August 28, 2007


14

Physics at Proton Colliders

- Protons are composite, complex objects
 - partonic substructure
 - quarks and gluons

Interesting hard scattering processes quark-(anti)quark quark-gluon qluon-gluon

However, hard scattering (high momentum transfer) processes are only a small fraction of the total cross section

- total inelastic cross section \approx 70 mb (huge!)
- dominated by events with small momentum transfer

August 28, 2007

Proton beam can be seen as beam of quarks and gluons with a wide band of energies

Proton-ProtonCollisions

x₁p

• The proton constituents (partons) carry only a fraction $0 \le x \le 1$ of the proton momentum

 The effective centre-of-mass energy √ŝ is smaller than √s of the incoming protons

$$p_{1} = x_{1} p_{A}$$

$$p_{2} = x_{2} p_{B}$$

$$if x_{1} = x_{2} = x$$

 $p_A = p_B = 7 \text{ TeV}$

August 28, 2007

To produce a particle of mass		
mass	LHC	Tevatron
100 GeV	$\mathbf{x} \approx 0.007$	$\mathbf{x} \approx 0.05$
5 TeV	$\mathbf{x} \approx 0.36$	

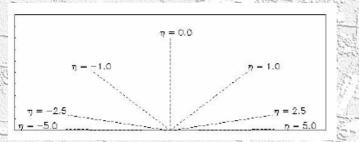
Note:

x₂p

- the component of the parton momentum parallel to the beam can vary from 0 to the proton momentum (0 ≤ x ≤ 1)
- the variation of the transverse component is much smaller (of order the proton mass)

Kinematics fully defined only in transverse plane

Variables in pp Collisions


Transverse momentum p_T $p_T = p \sin \theta$

Rapidity:
$$y = \frac{1}{2} \ln \frac{E + p_L}{E - p_L}$$

Differences in y are invariant under Lorentz boosts

Pseudo-rapidity: $\eta = -\ln\frac{\theta}{2}$

handy approximation, do not need to know the particle mass

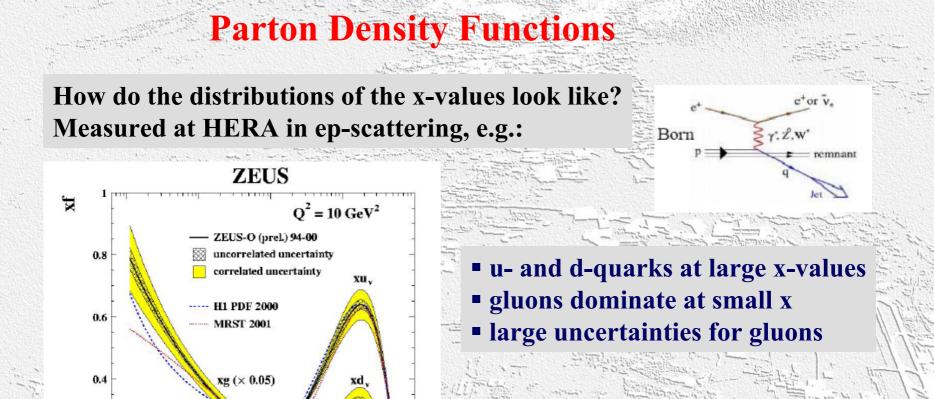
August 28, 2007

J. Mnich: Physics at pp colliders

 $\theta = 90^{\circ}$

 $\theta = 10^{\circ}$

proton


 $\eta = 0$

 $\eta \approx 2.4$

p_T

proton

θ

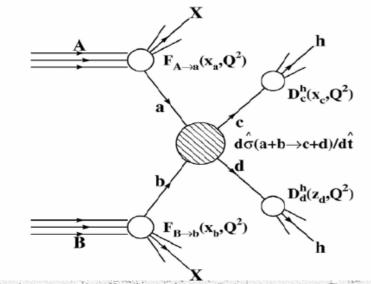
0.2

0

10

August 28, 2007

xS (× 0.05)


10

10-2

10

1 X

Cross Section Calculation

sum over initial states a,b

 $\sigma = \sum \int dx_{a} dx_{b} f_{a} (x_{a}, Q^{2}) f_{b} (x_{b}, Q^{2}) \hat{\sigma}_{ab} (x_{a}, x_{b})$

• $f_i(x_i, Q^2)$ = parton density functions

Example: W production in leading order

$\sigma(pp \rightarrow W) \approx 150 \text{ nb} \approx 2 \cdot 10^{-6} \sigma_{tot}$

August 28, 2007

 W^+

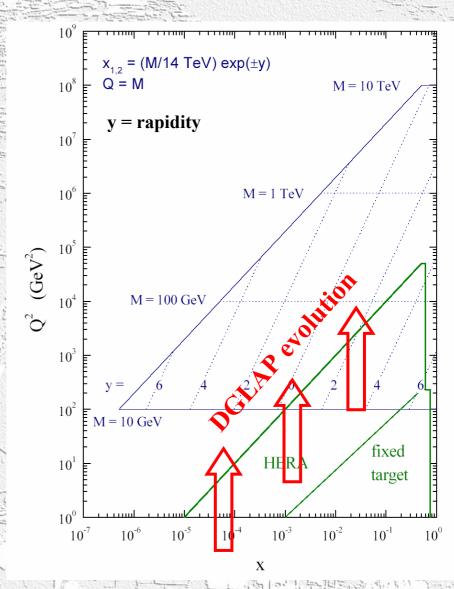
Parton Density Functions at the LHC

LHC is a proton-proton collider But fundamental processes are the scattering of

- Quark Antiquark
- Quark Gluon
- Gluon Gluon

Examples:

10000


000

August 28, 2007

 $q\bar{q} \rightarrow W \rightarrow lv$

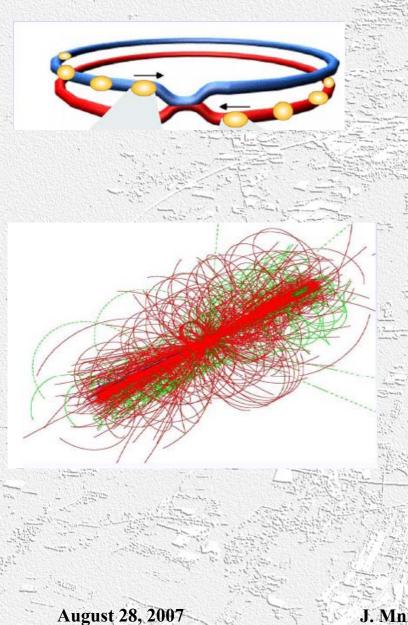
 $gg \rightarrow H$

Rate of produced events for a given process

N = σ **L** σ cross section [barn = 10⁻²⁴ cm²] L luminosity [1/cm²/s]

and the second s

- luminosity depends on machine parameters: number of protons stored, beam focus at the interaction point, ...
- Iuminosity should be high to achieve acceptable rates for rare processes


Luminosity

Comparison of colliders:

- $10^{31}/cm^2/s$ LEP
- 2·10³²/cm²/s Tevatron Run II design
- 10^{33} /cm²/s LHC initial phase (≈ 3 years)
- 10^{34} /cm²/s LHC design luminosity (> 2010)

- 1 experimental year is about 10⁷ s
- 10 fb⁻¹ per year in the initial LHC phase
- 100 fb⁻¹ per year later

Proton-Proton Collisions at the LHC

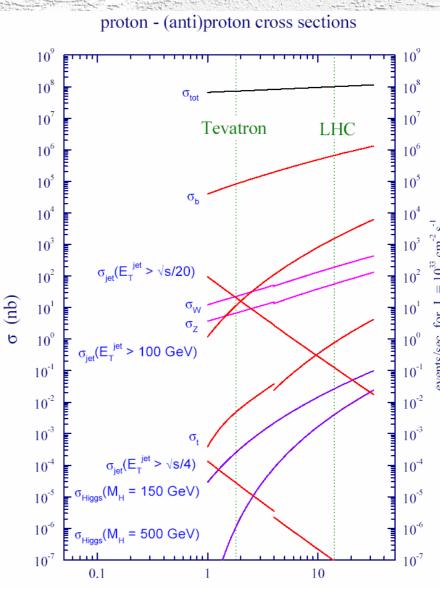
- 2835 + 2835 proton bunches separated by 7.5 m
 → collisions every 25 ns = 40 MHz crossing rate
- 10¹¹ protons per bunch
- at 10^{34/}cm²/s
 ≈ 35 pp interactions per crossing pile-up
 - $\rightarrow \approx 10^9$ pp interactions per second !!!
 - in each collision
 ≈ 1600 charged particles produced

enormous challenge for the detectors

Cross Section of Various SM Processes

 $\Rightarrow Low luminosity phase$ 10³³/cm²/s = 1/nb/s

approximately

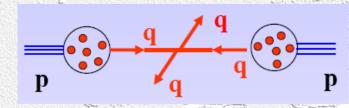

- > 10⁸ pp interactions
- > 10⁶ bb events
- > 200 W-bosons
- 50 Z-bosons
- 1 tt-pair
- will be produced per second and
 - > 1 light Higgs

August 28, 2007

per minute!

The LHC is a b, W, Z, top, Higgs, ... factory!

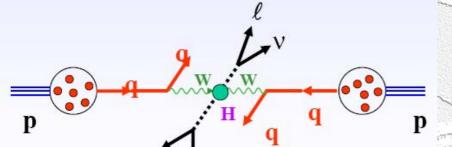
The problem is to detect the events!



(TeV)

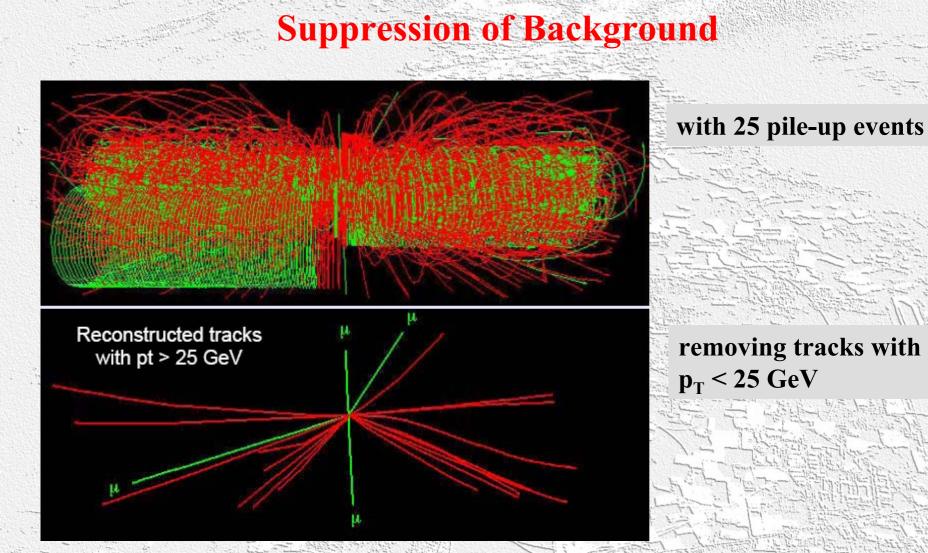
√s

Experimental Signatures


1. Hadronic final states, e.g. quark-quark

no high $p_{\rm T}$ leptons or photons in the final state

holds for the bulk of the total cross section


2. Lepton/photons with high p_T, example Higgs production and decay

August 28, 2007

Important signatures for interesting events: - leptons and photons

- icpions and photons
- missing transverse energy

requires high granularity (many channels)
good position, momentum and energy resolution

good position, momentum and energy i

August 28, 2007

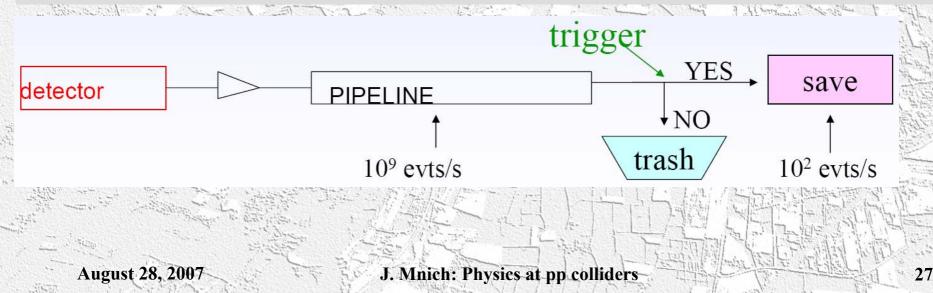
- good measurement of leptons (high p_T) muons: large and precise muon chambers electrons: precise electromagnetic calorimeter and tracking
- good measurement of photons
- good measurement of missing transverse energy (E_T^{miss}) requires in particular good hadronic energy measurements down to small angles, i.e. large pseudo-rapidities (η ≈ 5, i.e. θ ≈ 1°)

Detector Design Aspects

 in addition identification of b-quarks and τ-leptons precise vertex detectors (Si-pixel detectors)

Very important: radiation hardness e.g. flux of neutrons in forward calorimeters 10¹⁷ n/cm² in 10 years of LHC operation

August 28, 2007

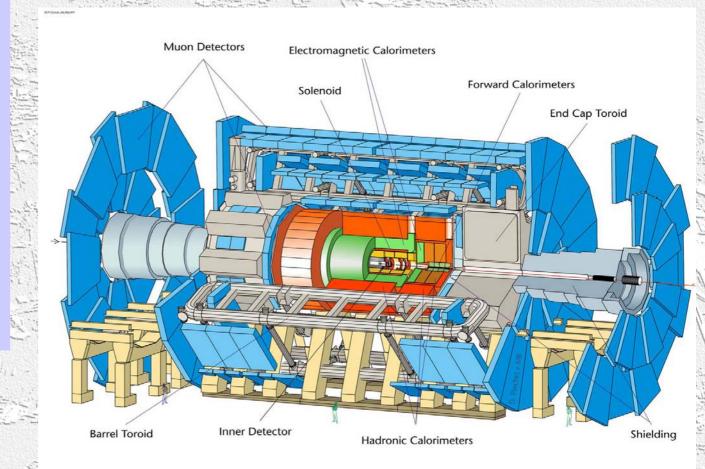

Trigger of interesting events at the LHC is much more complicated than at e⁺e⁻ machines

Online Trigger

- interaction rate: $\approx 10^9$ events/s
- max. record rate: ≈ 100 events/s

event size ≈ 1 MByte $\Rightarrow 1000$ TByte/year of data

- \Rightarrow trigger rejection $\approx 10^7$
- collision rate is 25 ns (corresponds to 5 m cable delay)
 trigger decision takes ≈ a few μs
 - ⇒ store massive amount of data in front-end pipelines while special trigger processors perform calculations

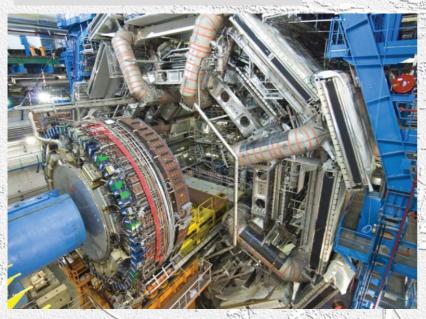


The ATLAS experiment

A Toroidal LHC ApparatuS

ATLAS in a nutshell:

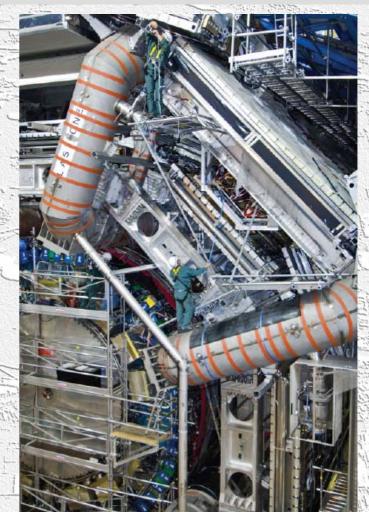
- Large air toroid with μ chambers
- HCAL: steel & scintillator tiles
- ECAL: LAr
- Inner solenoid (2 T)
- Tracker: Si-strips & straw tubes (TRD)
- Si-pixel detector 10⁸ channels
 - 15 μm resolution



Status of ATLAS

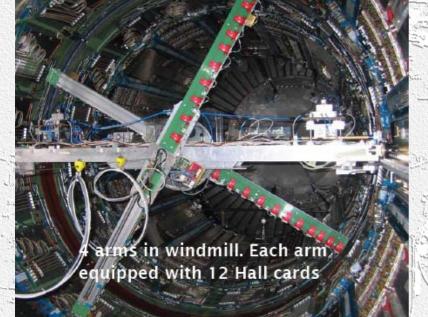
Major structures assembled underground

all calorimeters installed



ATLAS: on track for LHC physics

August 28, 2007

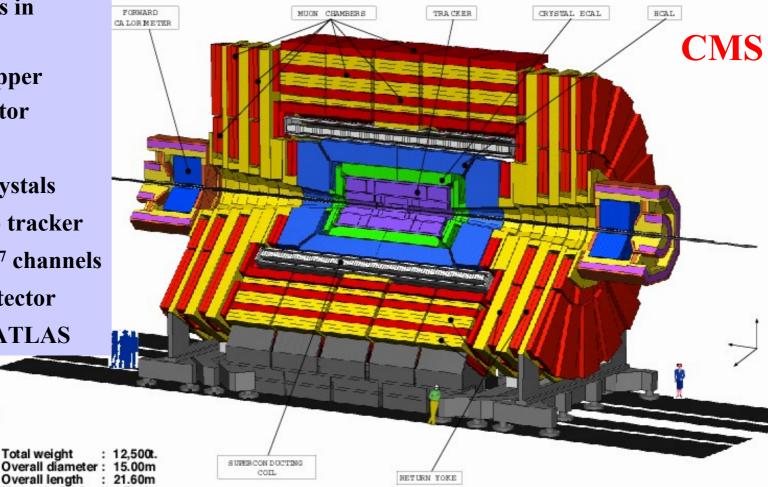

J. Mnich: Physics at pp colliders

99% of barrel µ chambers installed

Status of ATLAS

- Magnets
 - barrel toroid tested sucesfully (11/06)
 - inner solenoid: tested & field map taken

- 1 endcap toroid sucessfully tested (03/07) moved to IP1
- 2nd followed in June


August 28, 2007

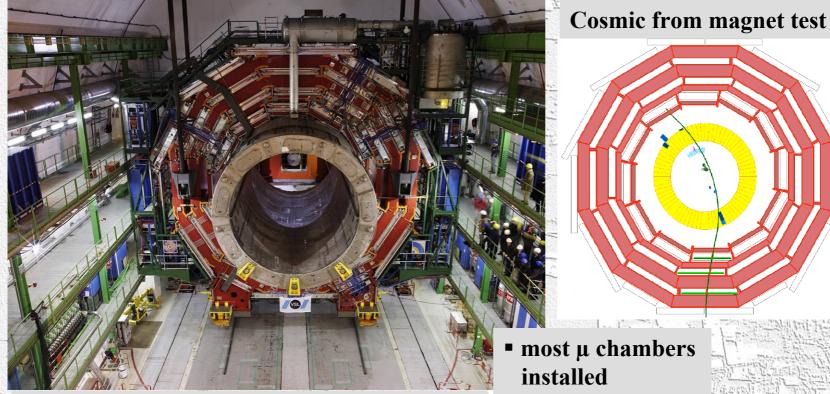
The CMS experiment

Compact Muon Solenoid

CMS in a nutshell:

- 4 T solenoid
- µ chambers in iron yoke
- HCAL: copper & scintillator
- ECAL: **PbWO₄** crystals
- All Si-strip tracker 220 m², 10⁷ channels
- Si-pixel detector similar to ATLAS

Overall length Magnetic field


Total weight

August 28, 2007

Status of CMS

CMS: major structures assembled on surface

- solenoid successfully operated at 4 Tesla (11/06), field map
- Iowering of central magnet slice (YB0) on February 28th

- 5/13 heavy pieces still to be lowered but all of known type
- 2nd endcap cabled, tested & commissioned on surface

August 28, 2007

J. Mnich: Physics at pp colliders

CMS: on track for LHC physics

Status of CMS

- Silicon tracker ready
 - under test at surface
 - to be installed in August 2007

CMS tracker:
≈ 220 m² of Si sensors
10.6 million Si strips
65.9 million Si pixel

• Pixel detector:

- 2/3 of modules produced
- ready for installation end 2007

August 28, 2007

Comparison of ATLAS and CMS

	ATLAS	CMS
longth		
length	≈ 46 m	≈ 22 m
diameter	≈ 25 m	≈ 15 m
weight	≈ 7000 t	≈ 12000 t

August 28, 2007

J. Mnich: Physics at pp colliders

Transverse View

.645 r

Trigger & DAQ system

Similar design for ATLAS & CMS

Example CMS: Collision rate 40 MHz Level-1 max. trigger rate 100 kHz[†] Average event size ≈ 1 Mbyte

Sec 2:

† 50 kHz at startup (DAQ staging)

Detector Frontend Level 1 40 MHz Trigger Readout 10⁵ Hz Systems Event Controls 1 Tb/s \bowtie **Builder Networks** Manager Filter Statems 10² Hz **Computing Services**

Filter farm:

- approx. 2000 CPUs
- easily scaleable

August 28, 2007

- staged (lower lumi & saves money)
- uses offline software

The longest journey starts with the first step...

ATLAS Atlantis Event: JiveXML_1008_00001_new Run: 1008 Event: 0 Just before Christmas: First cosmics muons registered in the stations installed in the bottom sector of the spectrometer -10

August 28, 2007

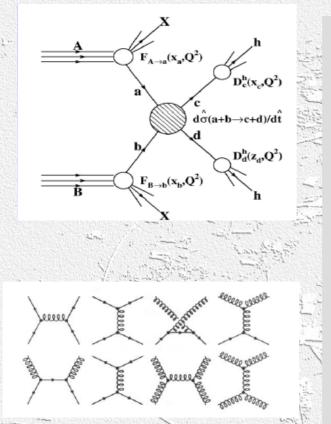
J. Mnich: Physics at pp colliders

z (m)

Z (m

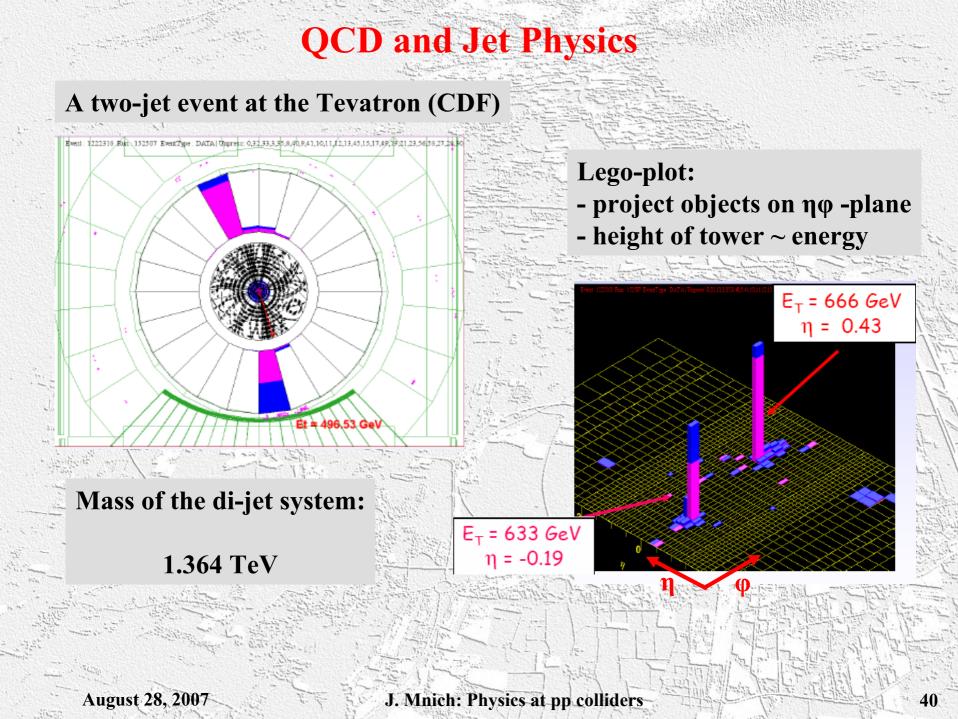
- 2008 first physics year
 - machine closure April
 - first collisions in summer at 7 TeV proton energy
 - try to reach few × 10³²/cm²/s
 - ≤ 1 fb⁻¹
- **2008 2010 three years at 1 2·10³³/cm²/s**
 - \geq 30 fb⁻¹ in total
 - important for precision physics and discoveries

Possible LHC Schedule

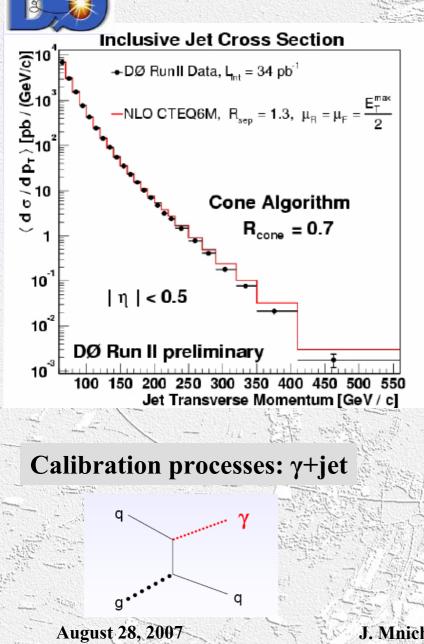

- \geq 2011 high luminosity running at 10³⁴/cm²/s
 - 100 fb⁻¹ per year
- 2015 Upgrade to Super LHC 10³⁵/cm²/s
 - under discussion
 - requires major machine and detector upgrades

Standard Model Physics

Not a complete survey Just a few examples of - Tevatron results and - LHC prospects on QCD, W&Z bosons and top physics



August 28, 2007


- Hard scattering processes dominated by QCD jet production
- Originating from quark-quark, quark-gluon and gluon-gluon scattering

colored objects fragment

- \rightarrow observation of jets with high p_{T} in the detectors
- Studies of jet production is important
 - test of the experiment
 - test of the theory, down to the smallest distances
 - new physics, e.g. quark substructure?

QCD and Jet Physics

Measured jet cross section versus ET:

- comparison to theory
- good agreement
 over many orders of magnitude
- theoretical errors
 - QCD higher order (difficult)

- pdf

measurement can be used to check pdf

- experimental errors
- jet energy scale
- A jet is not a very well defined object:
- need algorithm to define it
- relation to parton energy → correction
 pile-up (LHC)

Jet rates will be one of the first compare to CDF result run II LHC result: statistical precision 3.5 NLO pQCD EKS CTEQ 6.1M, (µ=p_T^{Jet}/2) 2 <u>fe</u> Midpoint R_{cone}=0.7, f_{merge}=0.75, R_{sen}=1.3 3⊢ Data corrected to parton level 100 pb-1 $L = 0.1 \text{ fb}^{-1}$ gd₁ L = 385 pb 0.1<|y|<0.7 = few weeks ⇒ <mark>d</mark>σ=1 fb dp_⊤=1 GeV ≏0.1 events GeV 2.5 Systematic uncertainty. 10 9 at 14 TeV Systematic uncertainty including 10 hadronization and underlying event. ati 10 NLO pQCD PDF uncertainty. Data/NLO pQCD(EKS) r --- MRST2004/CTEQ 6.1M ction 1.5 10^{-1} ñ 10° 10-4 1000 1500 2000 2500 3000 3500 4000 5 C CDF Run I 0.5 6% luminosity uncertainty not included 10 fb-1 100 300 $L = 10 \text{ fb}^{-1}$ =1 fb GeV ≏10 events GeV = 1 year 10 10°

10

10 10 10-

0

500

August 28, 2007

1000 1500 2000 2500 3000 3500 4000

p /Ge/

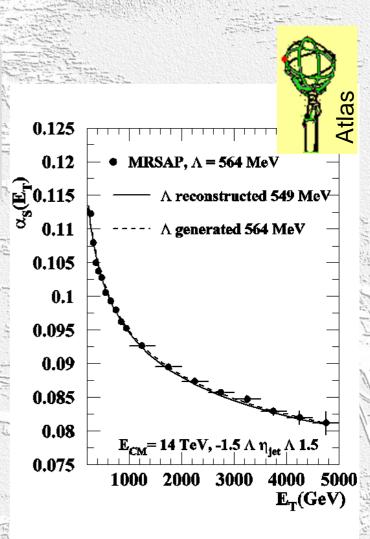
detector systematic effects expected to be similar to Tevatron

400

500

600

p_T (GeV/c)


Measurement of α_s at LHC limited by

- **≻ PDF (3%)**
- Renormalisation & factorisation scale (7%)
- Parametrisaton (A,B)

 $\frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mathrm{T}}} \sim \alpha_{\mathrm{S}}^{2}(\mu_{\mathrm{R}})A(E_{\mathrm{T}}) + \alpha_{\mathrm{S}}^{3}(\mu_{\mathrm{R}})B(E_{\mathrm{T}})$

• 10% accuracy α_s(m_Z) from incl. jets

- Improvement from 3-jet to 2-jet rate?
- Verification of running of α_s and test of QCD at the smallest distance scale
- > $\alpha_s = 0.118$ at m_Z > $\alpha_s \approx 0.082$ at 4 TeV (QCD expectation)

W and Z bosons were discovered in proton-antiproton collisions 1983: UA1 & UA2 at the SppS collider at CERN

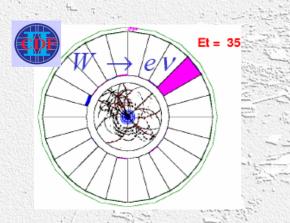
Electroweak Physics (W and Z Bosons)

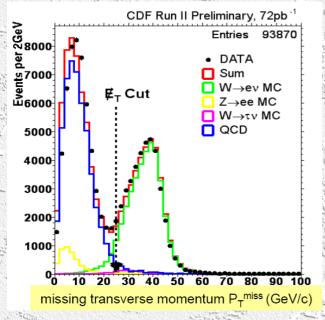
How do W/Z events look like at proton colliders?

Use leptonic decays (electrons & muons)

• $W \rightarrow lv$ high p_T lepton + missing E_T

■ $Z \rightarrow II$ 2 oppositely charged, high p_T leptons 10 GeV


and the states -

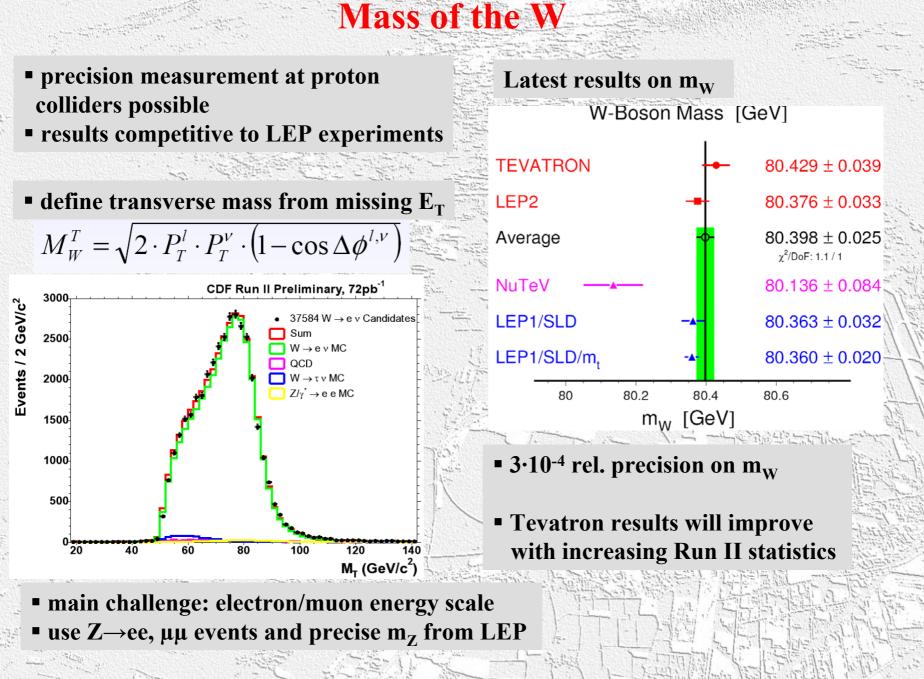

Examples of early W/Z events

August 28, 2007

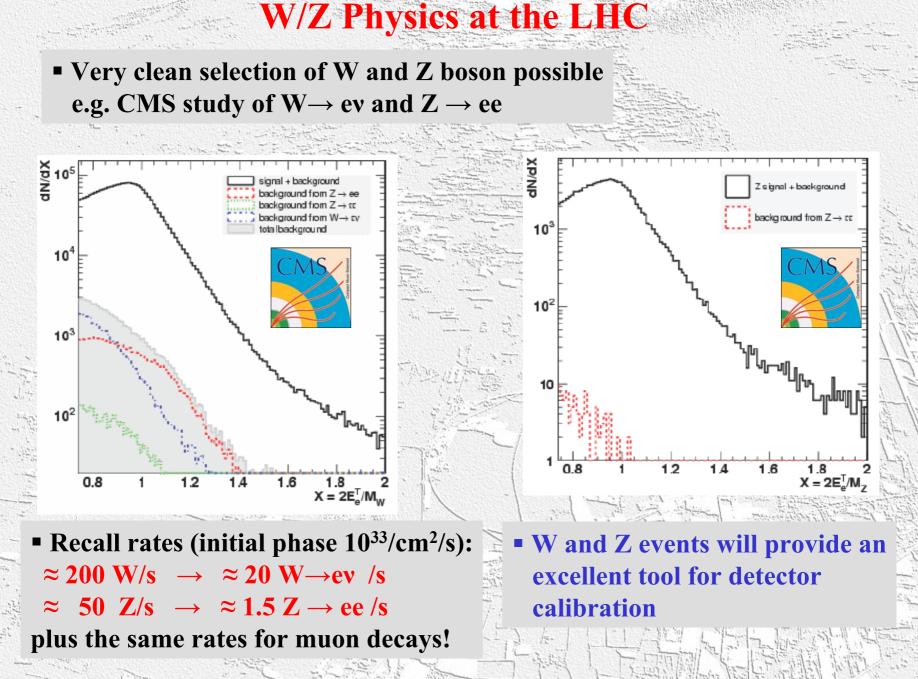
W and Z Bosons

Example from the Tevatron:

August 28, 2007


Electrons

- Isolated el.magn. cluster in the calorimeter
- P_T> 25 GeV/c
- Shower shape consistent with expectation for electrons
- Matched with tracks

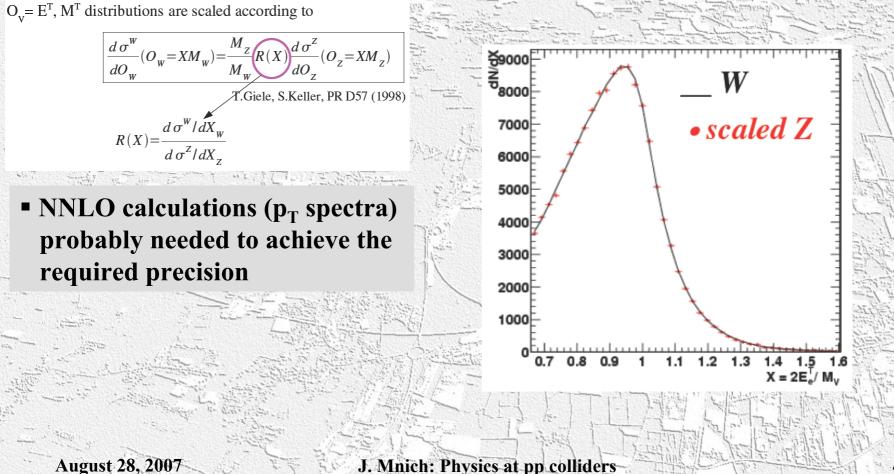

Z → ee

- 70 GeV/ c^2 < m_{ee} < 110 GeV/ c^2
- $W \rightarrow ev$
- Missing transverse momentum > 25 GeV/c

Separation of W →lv events from background

August 28, 2007

August 28, 2007


J. Mnich: Physics at pp colliders

47

• Any improvement at the LHC requires control of systematic error to 10⁻⁴ level

W Mass at the LHC

- take advantage from large statistics $Z \rightarrow e^+e^-$, $\mu^+\mu^-$
- most experimental and theoretical uncertainties cancel in W/Z ratio e.g. Scaled Observable Method

W Mass at the LHC

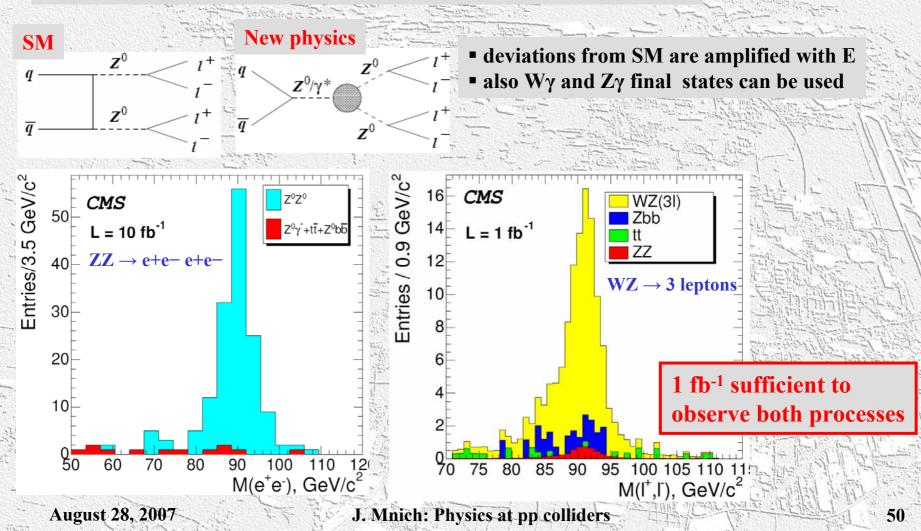
ATLAS study:

<u>Source</u>	<u>CDF</u> Run Ib	ATLAS or CMS	$W {\rightarrow} \mathit{l} \nu$, one lepton species
	30K evts, 84 pb ⁻¹	60M evts, 10fb ⁻¹	
Statistics	65 MeV	< 2 MeV	
Lepton scale	75 MeV	15 MeV	most serious challenge
Energy resolution	25 MeV	5 MeV	known to 1.5% from Z peak
Recoil model	33 MeV	5 MeV	scales with Z statistics
W width	10 MeV	7 MeV	ΔΓ _W ≈30 MeV (Run II)
PDF	15 MeV	10 MeV	
Radiative decays	20 MeV	<10 MeV	(improved Theory calc)
P _T (W)	45 MeV	5 MeV	P _⊤ (Z) from data, P _⊤ (W)/ P _⊤ (Z) from theory
Background	5 MeV	5 MeV	
TOTAL	113 MeV	≾ 25MeV	Per expt, per lepton species

Combine both channels & both experiments

 $\Rightarrow \Delta m_{\rm W} \le 15 \text{ MeV} \text{ (LHC)}$

 Compare to
 LEP & Tevatron Run I/II

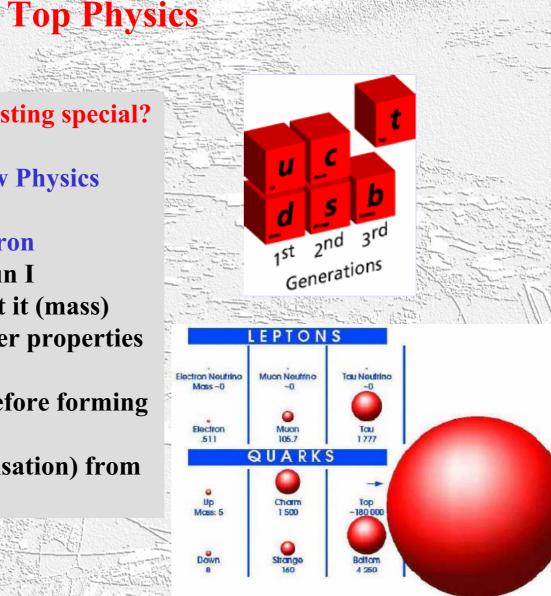

 2007: $m_W \approx 80 \dots \pm 20 \text{ MeV}$ (2.5 · 10⁻⁴)

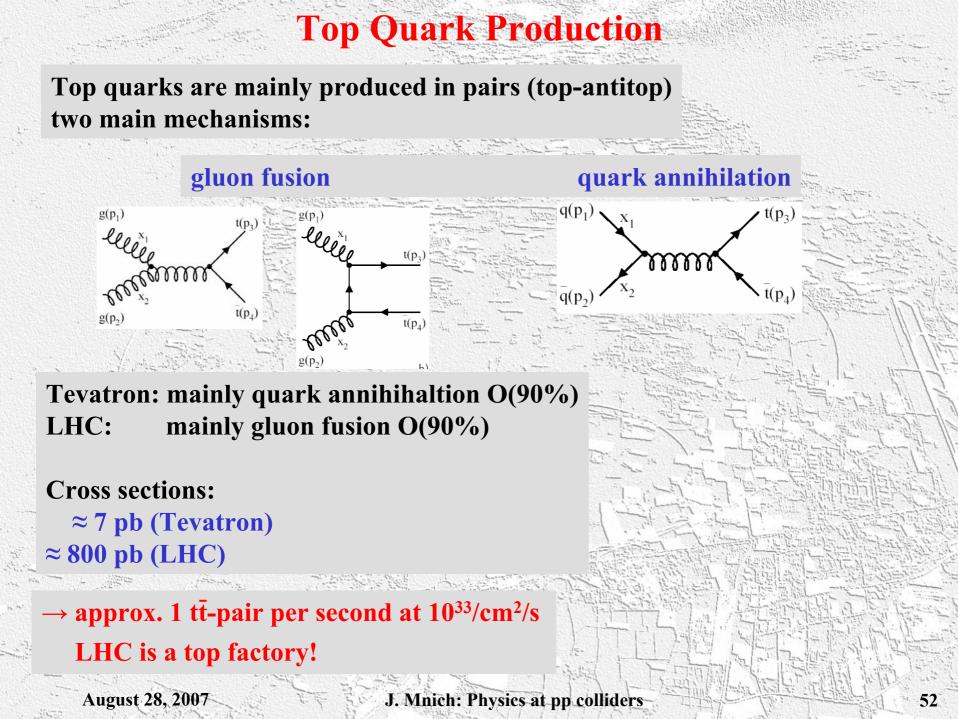
 LEP & Tevatron Run I/II
 expected after Tevatron Run II

August 28, 2007

Di-Boson Production at the LHC

- very interesting: WW,ZZ final states not yet observed at the Tevatron first WZ events observed early 2007
- test triple gauge boson couplings (TGC)
 - γWW and ZWW precisely fixed in SM
 - γZZ and ZZZ do not exist in SM!


Why is the top quark so interesting special?


- by far the heaviest fermion
- could provide window to New Physics (mass generation)
- discovered 1995 at the Tevatron O(100) events observed in Run I
- still we know very little about it (mass) would like to measure all other properties
- top has a very short lifetime

August 28, 2007

the <u>only</u> quark that decays before forming hadrons

 \rightarrow can determine spin (polarisation) from its decay products

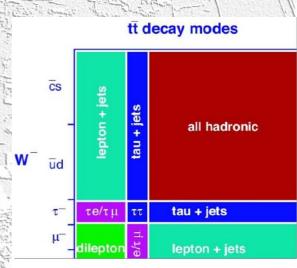
Top Quark Decay

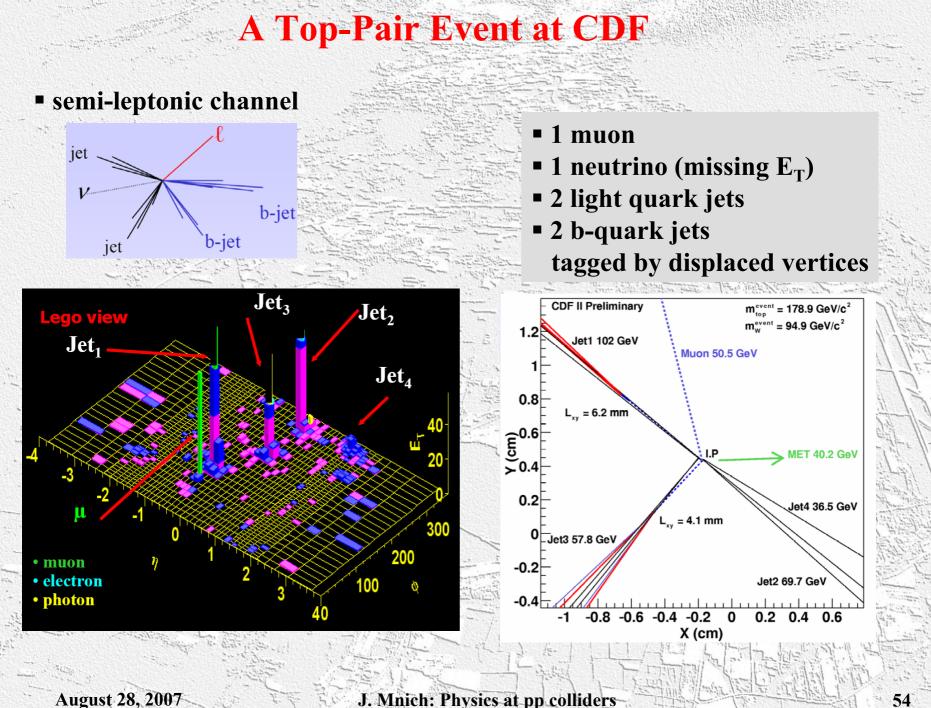
■ Top decay: ≈ 100% t → bW

- Other rare SM decays:
 - CKM suppressed t \rightarrow sW, dW: 10⁻³ –10⁻⁴ level

■ t→bWZ: O(10⁻⁶)

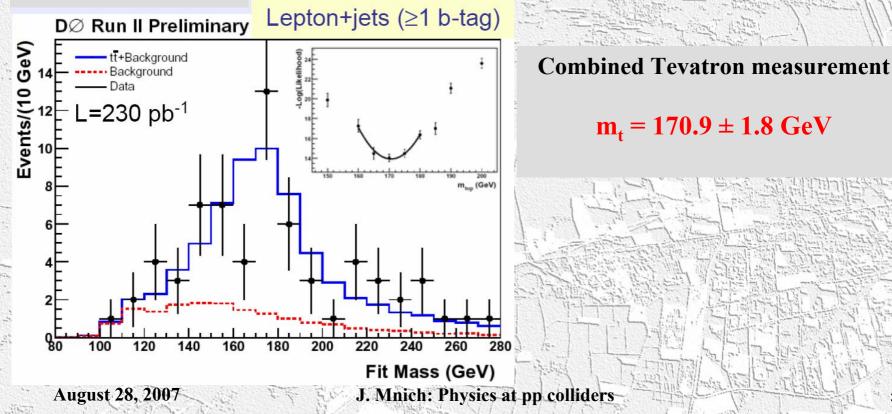

difficult, but since $m_t \approx m_b + m_W + m_Z$ sensitive to m_t


• & non-SM decays, e.g. $t \rightarrow bH^+$

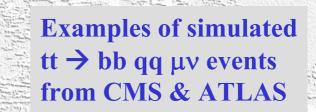

In SM topologies and branching ratios are fixed: • expect two b-quark jets

and the second and the

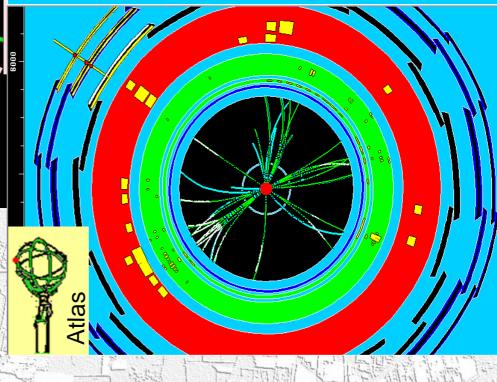
- plus W⁺W⁻ decay products:
 - 2 charged leptons + 2 neutrinos
 - I charged lepton + 1 neutrino + 2 jets
 - 4 jets (no b-quark!)


J. Mnich: Physics at pp colliders

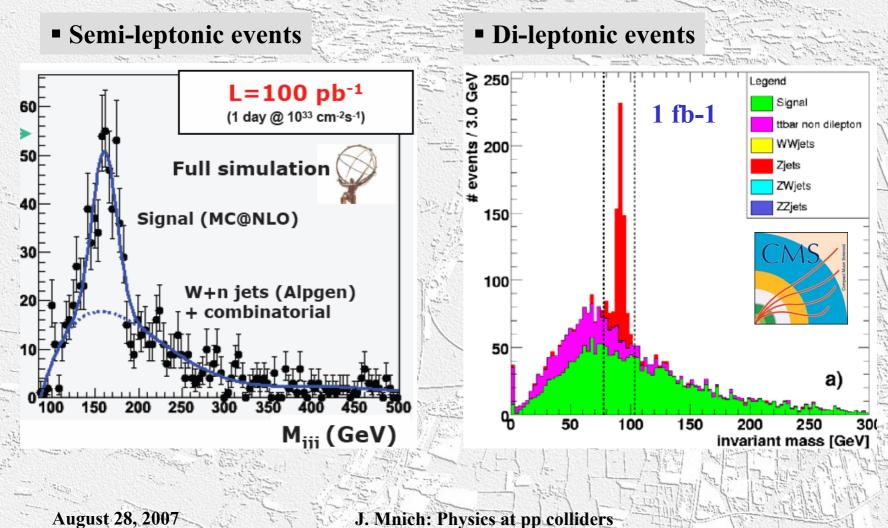
54


Top Mass Measurement

- select top pair events
- perform kinematic fit to improve resolution
 use W mass to fix jet energy scale
- perform maximum likelihood fit to all observed events


Result from D0:

Top Quarks at the LHC


ATLAS Atlantis Event: full_\$ATLA

August 28, 2007

Top Mass at the LHC

Because of the high production rate results on m_t can be obtained with low/modest luminosity:

Top Mass at the LHC

(GeV/c²)

shift

systematic

75

73

 χ^2 / ndf

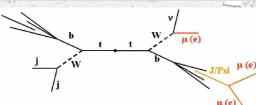
semi-leptonic

goal

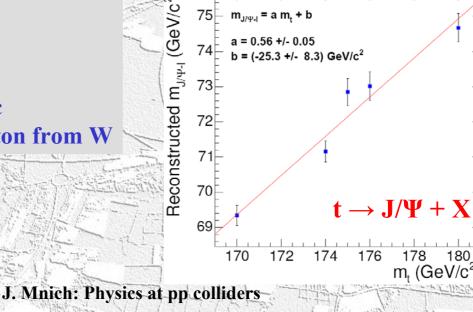
2

1.462

(%)

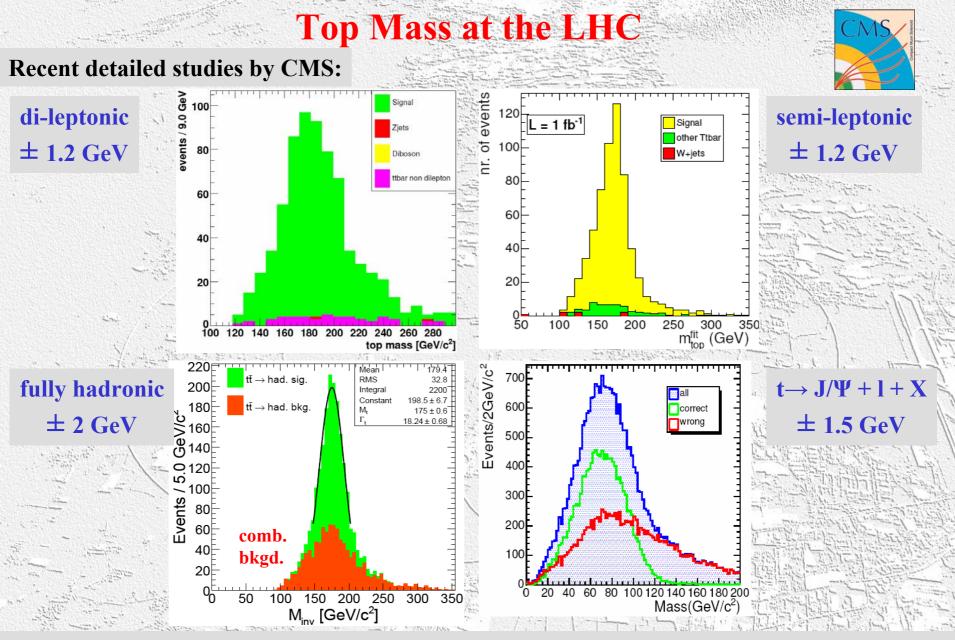

58

 $\alpha_{\text{b-iets}}$


0.5958 %0.06535

All decay topologies can be used: di-lepton events kinematics underconstraint but sensitive to m_t

- semi-leptonic events golden channel, ideogramm method limited by b-jet E-scale
- fully hadronic top pairs suffers from QCD and combinatorial background
- exclusive $t \rightarrow J/\Psi + X$ decays low stat., but different systematic partial reconstruction J/ Ψ + lepton from W


August 28, 2007

m_{J/Ψ-I} = a m, + b

a = 0.56 +/- 0.05

 $b = (-25.3 + / - 8.3) GeV/c^2$

 \rightarrow total top mass error ≤ 1 GeV possible with O(10 fb⁻¹) of well understood data

August 28, 2007

J. Mnich: Physics at pp colliders

59

Search for Higgs Bosons

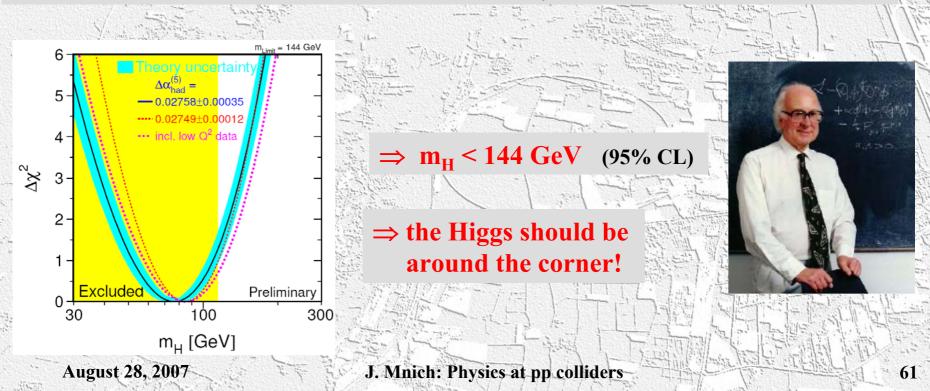
Emphasis on SM Higgs

J. Mnich: Physics at pp colliders

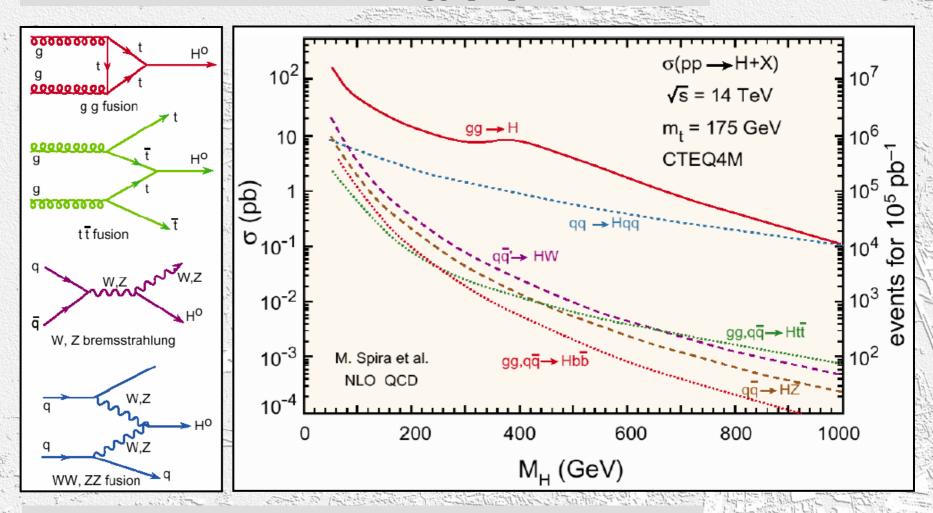
60

August 28, 2007

What do we know today about the SM Higgs boson?


needed in the SM to accomodate masses (heavy gauge bosons and fermions)

Standard Model Higgs Boson

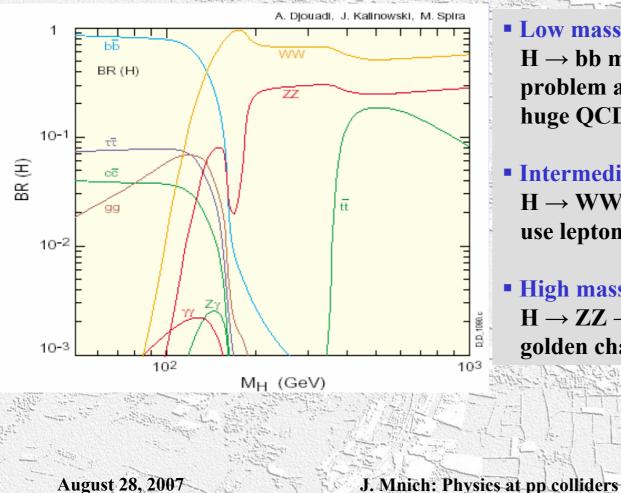

- mass is not predicted, except that $m_H < 1000 \text{ GeV}$
- direct searches at LEP

m_H > 114.4 GeV

electroweak precision measurements (incl. m_t measurement)

Once the mass is know all other Higgs properties are fixed!

Higgs Boson Production at the LHC


- Gluon-gluon fusion and W, Z fusion are dominant
- Cross section at the Tevatron almost factor 100 smaller!

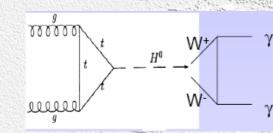
August 28, 2007

Higgs couples proportional to masses ⇒ preferentially decaying into heaviest particle kinematically allowed

Higgs Boson Decay

Branching ratio versus m_H:

 Low mass (115 < m_H < 140 GeV H → bb make up most of the decays problem at the LHC because of the huge QCD background !


 Intermediate (140 < m_H < 180 GeV) H → WW opens up use leptonic W decay modes

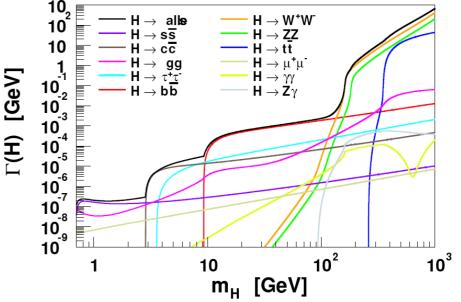
63

 High mass (m_H > 180 GeV) H → ZZ → 4 leptons golden channel! What to do in the preferred low mass region, i.e. $m_H < 140$ GeV?

Higgs Boson Decay

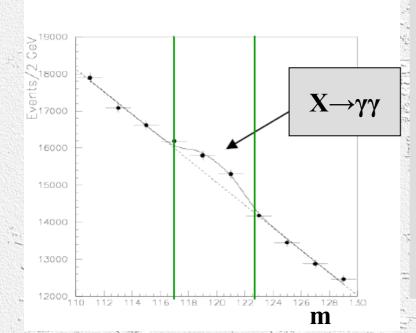
- use H →γγ
- very low branching ratio O(10-3)
- but clean signature

internal loop with heavy charged particle W boson or top quark


Total width of the Higgs (= inverse lifetime)
at low masses Higgs is a very sharp resonance

 $\Gamma_{\rm H} << 1 {\rm ~MeV}$

 $\Gamma_{\rm H} \approx m_{\rm H}$


August 28, 2007

• $\Gamma_{\rm H}$ explodes once H \rightarrow WW, ZZ open up for m_H \rightarrow 1 TeV

Higgs Discovery

How could we claim a Higgs discovery? Suppose a narrow resonance decaying into 2 photons

Convention:

- discovery if S > 5
- Gaussian probability that background fluctuates up by more than 5 σ is 10-7

Signal significance S:
 count in signal region

 (defined by Γ_X and resolution)
 N_S number of signal events
 N_B number of background events

 $\mathbf{S} = \mathbf{N}_{\mathbf{S}} / \sqrt{\mathbf{N}_{\mathbf{B}}}$

 $\sqrt{N_B}$ fluctuation of background events use Poisson for small N_B

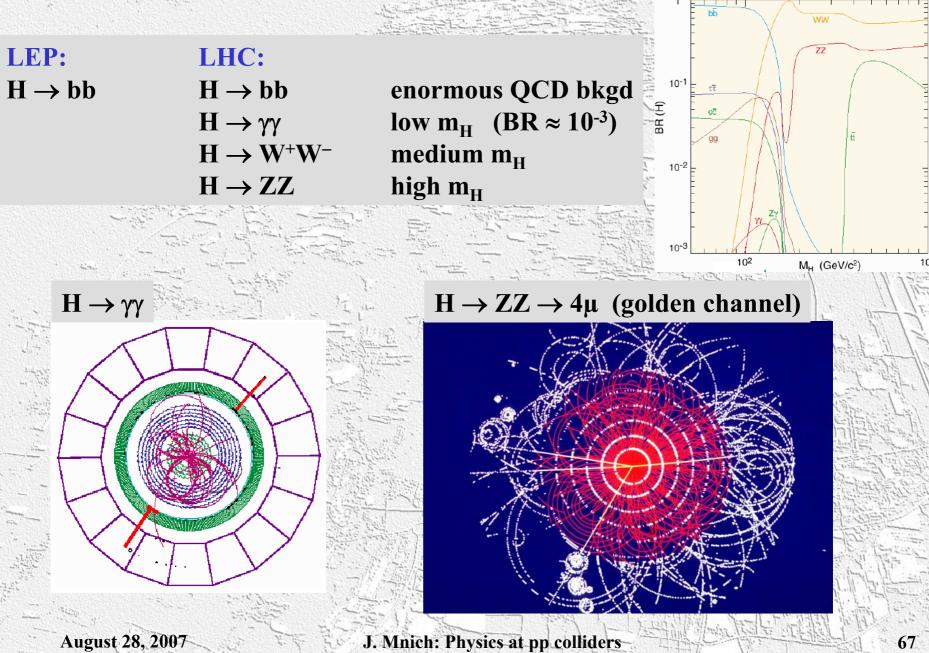
65

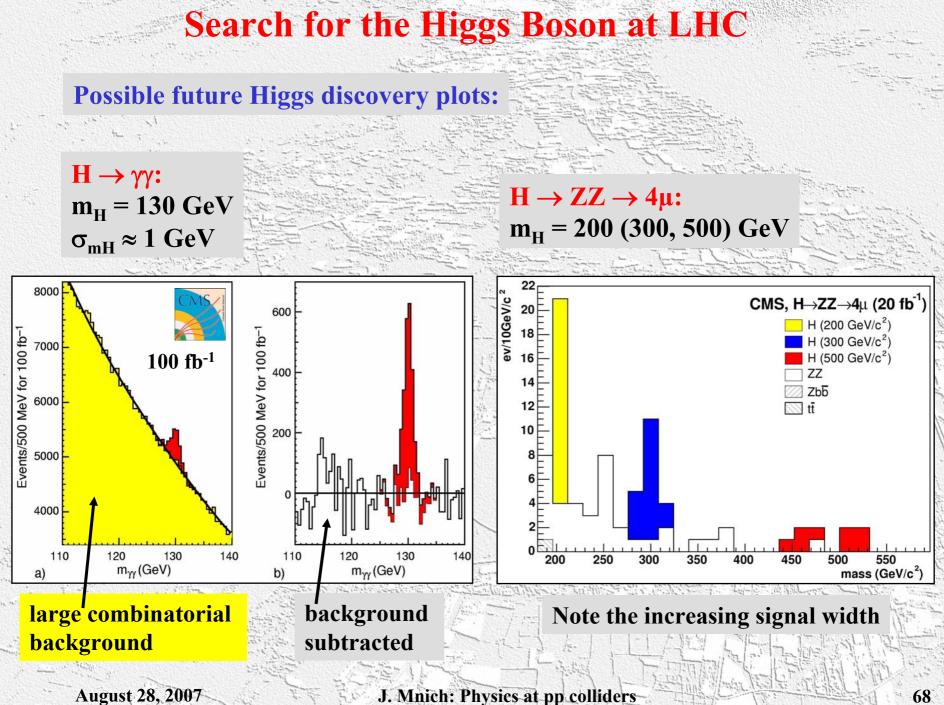
Two critical parameters to maximise S:

1. Improve, i.e. reduce, experimental resolution σ_m if σ_m is worse by factor 2, N_B increases by factor 2 $\Rightarrow S = N_S / \sqrt{N_B}$ decreases by $1/\sqrt{2}$

Higgs Discovery

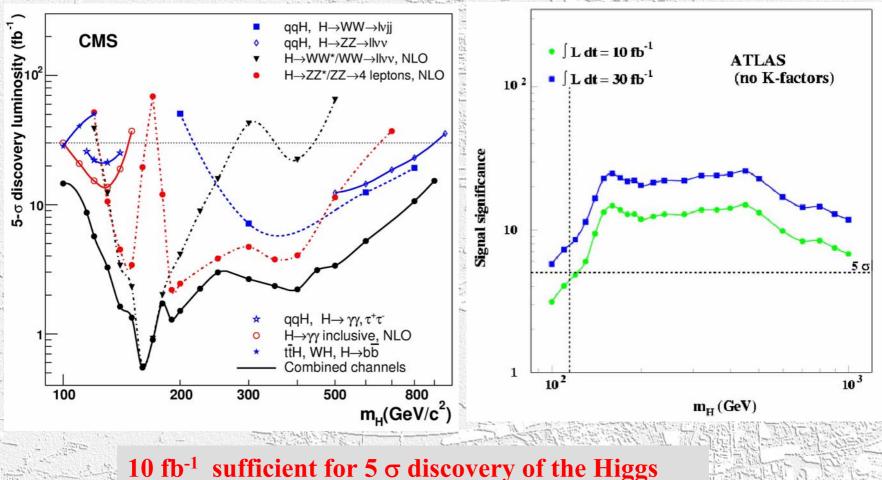
 \Rightarrow S \propto 1/ $\sqrt{\sigma_m}$


holds until $\sigma_m \approx \Gamma_X$


2. Luminosity $N_S \propto L$ and $N_B \propto L$

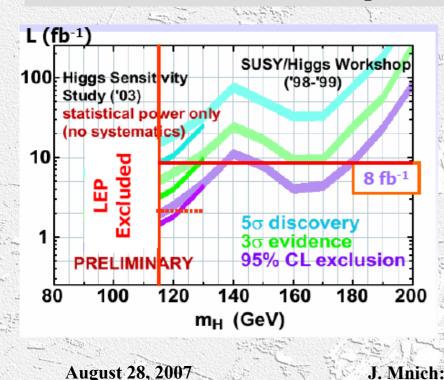
 \Rightarrow S $\propto \sqrt{L}$

August 28, 2007


Search for the Higgs Boson

Combine all search channels and determine expected significance as function of the luminosity and Higgs mass:

Search for the Higgs Boson at the LHC


corresponds to 1 year at low luminosity 10³³/cm²/s

August 28, 2007

 The LHC will explore the entire Higgs mass region and definitely answer the question if there is a Higgs boson or not (holds for SM and MSSM)

Summary on Higgs search

- The modest amount of 10 fb⁻¹ of luminosity is required could be collected in 1-2 years
- How about the Tevatron experiments?

For an estimated luminosity of 8 fb⁻¹ • 2 σ exclusion up to m_H \approx 180 GeV • 3 σ evidence up to m_H \approx 130 GeV

Search for New Phenomena

Supersymmetry (MSSM)

J. Mnich: Physics at pp colliders

August 28, 2007

- Why are we not satisfied with the Standard Model?
- many open questions, gravity, dark matter, unification of couplings, hierachy problem, ...

SUSY Motivation

Need a more fundamental theory of which the SM is a `low energy` approximation:

Supersymmetry, Extra Dimensions, Technicolor, ... all predict new phenomena/particles at the TeV scale

Minimal Supersymmetric Model:

symmetry between fermion and bosons

 $q \text{ (s=1/2)} \rightarrow |\widetilde{q}| \text{ (s=0)}$

g (s=1) $\rightarrow \qquad \widetilde{g}$ (s=1/2)

• for each SM particle there is a SUSY partner with $\Delta s = \frac{1}{2}$

and when

Ex. :

squarks

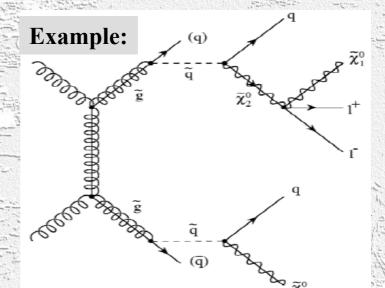
gluino

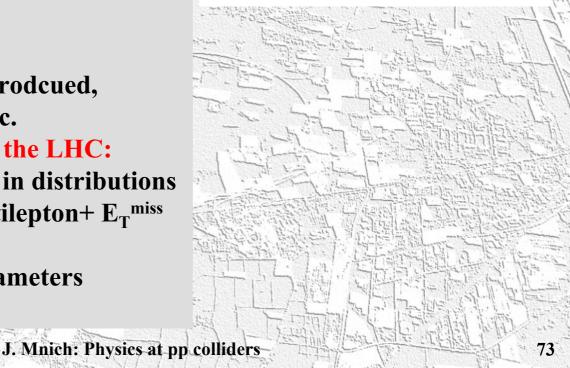
SUSY Search at LHC

Production of SUSY particles at the LHC

- squarks and gluinos are pair-produced through strong interaction, i.e. high cross sections
- but also sleptons and other SUSY particles can be pair-produced
- SUSY particles decay in a chain to SM particles plus the LSP

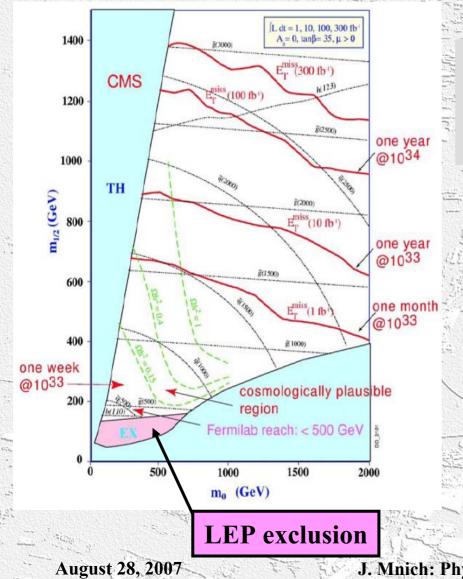
Signature:


- Ieptons, jets and missing E_T
- depend of SUSY particles prodcued, on their branching ratios etc.


Strategy to discover SUSY at the LHC:

- look for deviation from SM in distributions
 e.g. multi-jet + E_T^{miss}, multilepton+ E_T^{miss}
- establish SUSY mass scale

August 28, 2007


 try to determine model parameters (difficult!)

Example: discovery reach as function of luminosity and model parameters which fix the mass scale of SUSY parameters

SUSY Search at LHC

- achievable limits exploiting E_T^{miss} signatures
- requires very good understanding of detectors

Conclusion:

- LHC will eclipse today's limits on SUSY particles and parameters
- or discover SUSY if it exists at the TeV scale

Experiments at proton colliders explore the highest energy frontier

Conclusions

- for discoveries of new particles and phenomena
- for precision meaurements
- Standard Model is great, but cannot be the ultimate theory
- pp experiments are testing and challenging the model
 - Experiments at the Tevatron are collecting larger data samples
 - LHC and the pp experiments ATLAS and CMS are will start next year to explore the TeV region
- The LHC experiments will
 - In the second second
 - will probe physics at the smallest distance scale
 - will answer the question if there is a Higgs boson or not
 - probe models like SUSY on the (multi-)TeV scale

Very exciting times are ahead of us! Come and join us now!

Questions & comments to Joachim.Mnich@desy.de

August 28, 2007