Physics at HERA

Summer Student Lectures 20 -22 August 2007

Katja Krüger Kirchhoff-Institut für Physik H1 Collaboration email: katja.krueger@desy.de

Overview Part 3

- Jet Physics
 - Cross Sections
 - Strong Coupling
- Heavy Quarks
 - Charm
 - Beauty
- Diffraction

Jet Physics & the Strong Coupling α_s

What are Jets?

- jets are narrow bundles of hadrons originating from quarks or gluons
- can be used to study QCD and the strong coupling

How Are Jets Produced?

- do analysis in a frame where photon and proton collide headon (e.g. Breit frame)
- → LO DIS cannot produce transverse momentum
- → jets with transverse momentum can originate from bosongluon fusion (BGF) or QCD-Compton (QCDC) processes

Jet Cross Sections

- theory curve:
 - NLO QCD calculation
 - PDFs
 - $-\alpha_s$
 - hadronisation
- very good agreement of theory and data
- uncertainty on PDF and theory input leads to uncertainty on α_s

Jet Cross Sections

Normalised Inclusive Jet Cross Section 150 < Q²< 200 GeV² $200 < Q^2 < 270 \text{ GeV}^2$ **H1** σ_{jet}/ σ_{NC} 🖥 H1 Data ^{10⁻¹ 0 v 0 ¹⁰⁻¹ 0} NLO \otimes hadr \otimes Z⁶ 1..... 1.4 1.2 <u>cc</u> 1.2 ⊈ 1.0 1.0 0.8 0.8 40 50 E_T / GeV 20 30 20 30 40 10 50 E, / GeV $270 < Q^2 < 400 \text{ GeV}^2$ H1 $400 < Q^2 < 700 \text{ GeV}^2$ H1 σ_{jet}/ σ_{nc} ____ ן ס_{jet}/ס_{NC} 10⁻² ۲ 1.5 œ ^{1.0} œ 1.0 0.5 40 50 Ε_τ / GeV 20 40 10 20 30 10 30 E, / GeV $700 < Q^2 < 5000 \text{ GeV}^2$ **H1** 5000 < Q²< 15000 GeV² H1 10 0^{jet}/ປ^{NC} 10² ^{10⁻¹ 0 ر¹⁰⁺ 0 10⁻²} ē 2.0 1.2 m 1.5 1.0 0.5 œ 1.0 0.8 40 50 E_T / GeV 40 50 Ε_T / GeV 10 20 30 10 20 30 50

ratio of jet cross section to inclusive cross section has reduced uncertainties

• systematic

• PDFs

Running of α_s

HERA

running of the strong coupling visible in one measurement

Running of α_s

HERA

comparison with other HERA measurements

 $\alpha_{\rm s}({\rm M_{z}})$

Improved Parton Densities

- F_2 is only indirectly sensitive to the gluon
- → global fits (MRST, CTEQ) use Tevatron jet data
- → alternative: use HERA (di-)jet data

improvement at medium to large x

Heavy Quarks

Production of Heavy Quarks

predominantly via boson gluon fusion

large quark mass allows pQCD calculations

directly sensitive to gluon density in the proton

heavy quark contribution to structure function

$$\frac{d^2 \sigma^{b\bar{b}}}{dx \, dQ^2} = \frac{2 \pi \alpha^2}{Q^4} Y_+ \left[F_2^{b\bar{b}}(x, Q^2) - \frac{y^2}{Y_+} F_L^{b\bar{b}}(x, Q^2) \right]$$

Reconstruction of charm Quarks

- fragmentation $c \rightarrow D^*$ meson (25,5%)
- ,,golden decay" (2,6%) $D^{*+} \rightarrow D^0 \pi_s^+ \rightarrow K^- \pi^+ \pi_s^+$
 - only charged decay particles

- small mass difference $\Delta M = m(D^*) - m(D^0)$

- small momentum of the ,,slow" π_s
- good experimental resolution (~1 MeV)

More charm Signals

Katja Krüger

Physics @ HERA

D* Cross Section

good description by NLO pQCD calculation (HVQDIS) in full measured Q^2 range (> 4 orders of magnitude)

PDF: ZEUS PDF extracted from inclusive DIS

Tagging of beauty Quarks

- large transverse momenta due to large mass
- semileptonic decay
- long lifetime (*beauty* \sim 500 µm, *charm* \sim 100-300 µm)

beauty Cross Section Results

HERA

some data higher than NLO QCD theory, but reasonable agreement for the most precise data

Inclusive Lifetime Tagging

signed impact parameter δ

- both experiments have silicon vertex detectors
- inclusive method: use all tracks
- study significance of the (signed) impact parameter: $S = \delta / \sigma(\delta)$
- allows separation of beauty, charm and light quarks

Contribution to the Cross Section

- large charm fraction (up to ~30%)
- small beauty fraction (%o to few %)
- charm and beauty thresholds
- reasonable description by theory

Contribution to the Structure Function

Katja Krüger

Diffraction

What is Diffraction?

- in general: in DIS events the proton breaks up
- in diffraction: the proton stays intact (but nevertheless W>M_P)

surprise: ~10% of all events at HERA are diffractive!

Diffraction

- idea: interaction
 between photon
 and proton by a
 "Pomeron"
 - colourless
 - already used to describe low
 energy hadronhadron scattering
 - no particle!

Physics in Diffraction

- many things similar to inclusive DIS
 - diffractive parton densities
 - jets in diffraction
 - heavy flavour in diffraction
- test of factorization
 - are the parton densities the same for all diffractive processes?
 - or: does the Pomeron know what happens at the photon vertex?

Diffractive Parton Densities

Diffractive Dijet Cross Sections

shape of the
QCD theory
prediction
agrees with the
data

- normalization is wrong by a factor 2
- → factorization is broken!

Summary

- HERA offered unique possibilities to study the structure of the proton
- perturbative QCD is a big success to desribe HERA data
- no significant deviation from the Standard Model found