Introduction to Particle Accelerators

Bernhard Holzer, DESY

DESY Summer Student Lectures 2007
Introduction
historical development \& first principles components of a typical accelerator
"....the easy part of the story"

The state of the art in high energy machines:
The synchrotron: linear beam optics
colliding beams,
luminosity
„... how does it work ?"
"...does it?"

Introduction to Particle Accelerators

I.) Historical note:

... the first steps in particle physics
Rutherford Scattering, 1906... 1913

Using radioactive particle sources: α-particles of some MeV energy

$$
N(\theta)=\frac{N_{i} n t Z^{2} e^{4}}{\left(8 \pi \varepsilon_{0}\right)^{2} r^{2} K^{2}} * \frac{1}{\sin ^{4}(\theta / 2)}
$$

Electrostatic Machines

II.) The Cockroft Walton Generator

create a high Voltage DC by rectifying an
AC Voltage: „cascade generator"

Force: $\quad|\vec{F}|=q *|\vec{E}|=q * \frac{U}{d}$

Energy: $\quad \Delta W=\int_{r 1}^{r 2} \vec{F} d \vec{r}=\int_{r 1}^{r 2} q * \vec{E} d \vec{r}=q * U$
usefull energy unit: ,,el"...

$$
\ldots 1 e V=1.6 * 10^{-19} J
$$

1932: First particle beam (protons) produced for nuclear reactions: splitting of Li-nuclei with a proton beam of 400 keV

Particle source: Hydrogen discharge tube on a 400 kV level Accelerator: evacuated glas tube Target: Li-Foil on earth potential

Electrostatic Machines

III.) (Tandem -) van de Graaff Accelerator

creating high voltages by mechanical transport of charges

* Terminal Potential: U ≈ 12... 28 MV using high pressure gas to suppress discharge (SF_{6})

Problems: * Particle energy limited by high voltage discharges

* high voltage can only be applied once per particle ...
... or twice?
* The „Tandem principle": Apply the accelerating voltage twice .
... by working with negative ions (e.g. H^{-}) and stripping the electrons in the centre of the structure

Example for such a „steam engine": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

IV.) Linear Accelerators

1928, Wideroe: how can the acceleration voltage be applied several times to the particle beam
schematic Layout:

* acceleration of the proton in the first gap
* voltage has to be "flipped" to get the right sign in the second gap $\rightarrow \mathrm{RF}$ voltage \rightarrow shield the particle in drift tubes during the negative half wave of the RF voltage

Beam Energy: Acceleration in the Wideroe Structure

1.) Energy gained after n acceleration gaps

$$
E_{n}=n * q * U_{0} * \sin \psi_{s}
$$

\boldsymbol{n} number of gaps between the drift tubes
q charge of the particle
$\boldsymbol{U}_{\boldsymbol{0}}$ Peak voltage of the RF System
Ψ_{S} synchronous phase of the particle
2.) kinetic energy of the particles

$$
E_{n}=\frac{1}{2} m * v_{n}^{2}
$$

valid for non relativistic particles ...
velocity of the particle (from (1) and (2))

$$
v_{n}=\sqrt{\frac{2 E_{n}}{m}}=\sqrt{\frac{2 * n * q^{*} U_{0} * \sin \psi_{S}}{m}}
$$

3.) shielding of the particles during the negative half wave of the RF

Time span of the negative half wave: $\tau_{\mathrm{RF}} / \mathbf{2}$

Length of the n-th drift tube:

$$
l_{n}=v_{n} * \frac{\tau_{R F}}{2}=v_{n} * \frac{1}{2 v_{R F}}
$$

! high RF frequencies make small accelerators
length of the \boldsymbol{n}-th drift tube ... or ... distance between two accelerating gaps:

$$
l_{n}=\frac{1}{v_{R F}} \sqrt{\frac{n * q^{*} U_{0} * \sin \psi_{S}}{2 m}}
$$

Example: DESY Accelerating structure of the Proton Linac

$$
E_{\text {total }}=988 \mathrm{MeV}
$$

reminder of some relativistic formula

rest energy

$$
E_{0}=m_{0} c^{2}=938 \mathrm{MeV}
$$

total energy

$$
E=\gamma^{*} E_{0}=\gamma^{*} m_{0} c^{2}
$$

momentum

$$
E^{2}=c^{2} p^{2}+m_{0}{ }^{2} c^{4}
$$

$$
p=310 \mathrm{MeV} / \mathrm{c}
$$

GSI: Unilac, typical Energie ≈ 20 MeV per
 Nukleon, $\beta \approx 0.04$... 0.6,
 Protons/Ions, $v=110 \mathrm{MHz}$

V.) The Cyclotron: (~ 1930)

circular accelerator with a constant magnetic field B = const

Lorentz force:

$$
\vec{F}=q *(\vec{v} \times \vec{B})
$$

centrifugal force:

$$
F=\frac{m * v^{2}}{\rho}
$$

condition for a circular particle orbit:

$$
\begin{aligned}
q * v * B=\frac{m * v^{2}}{\rho} & \rightarrow B * \rho=p \\
& \rightarrow \frac{\rho}{v}=\frac{m}{q^{*} B}
\end{aligned}
$$

time for one revolution:

$$
T=2 \pi \frac{\rho}{v}=2 \pi \frac{m}{q^{*} B_{z}}
$$

revolution frequency

$$
\omega_{z}=2 \pi \frac{1}{T}=\frac{q}{m} * B_{z} \rightarrow \omega_{z}=\text { const } .
$$

$!\omega$ is constant for a given $q \& B$
$!!B^{*} \rho=p / q$
large momentum \rightarrow huge magnets
$!!!!\omega \sim \mathbf{1} / \mathbf{m} \neq$ const.
works properly only for non relativistic particles

The state of the art in high energy machines:

The synchrotron: linear beam optics colliding beams, luminosity
„... how does it work ?"
„...does it?"

The state of the art in high energy acceleration: The Synchrotron

Design Principles of a Synchrotron

I.) the bending magnets ... guide the particles

"... in the end and after all it should be a kind of circular machine" \rightarrow need transverse deflecting force
... again ... the Lorentz force

$$
\vec{F}=q^{*}(*+\vec{v} \times \vec{B})
$$

typical velocity in high energy machines:

$$
\nu \approx c \approx 3 * 10^{8} \mathrm{~m} / \mathrm{s}
$$

old greek dictum of wisdom:
if you are clever, you use magnetic fields in an accelerator where ever it is possible.

But remember: magn. fields act allways perpendicular to the velocity of the particle
\rightarrow only bending forces, \rightarrow no „beam acceleration"

Lattice Design: Prerequisites
 Lorentz force $\quad \vec{F}=q^{*}(\vec{v} \times \mathbf{B})$

High energy accelerators \rightarrow circular machines somewhere in the lattice we need a number of dipole magnets, that are bending the design orbit to a closed ring

In a constant external magnetic field the particle trajectory will be a part of a circle and ... the centrifugal force will be equal to the Lorentz force

$$
e^{*} v * B=\frac{m v^{2}}{\rho} \quad \rightarrow e^{*} B=\frac{m v}{\rho}=p / \rho
$$

$$
\rightarrow B^{*} \rho=p / e
$$

$\mathrm{p}=$ momentum of the particle,
$\rho=$ curvature radius
$B^{*} \rho$ is called the "beam rigidity"
Example: heavy ion storage ring: TSR 8 dipole magnets of equal bending strength

Circular Orbit:

$$
\alpha=\frac{s}{\rho} \approx \frac{l}{\rho} \quad \alpha=\frac{B^{*} l}{B^{*} \rho}
$$

The angle swept out in one revolution must be 2π, so

field map of a storage ring dipole magnet

$$
\alpha=\frac{\int B d l}{B * \rho}=2 \pi \quad \ldots \text { for a full circle }
$$

$$
\rightarrow B^{*} L=2 \pi * \frac{p}{q}
$$

The overall length of all dipole magnets multiplied by the dipole field corresponds to the momentum (\approx energy) of the beam!

Example HERA:

920 GeV Proton storage ring number of dipole magnets $\mathrm{N}=416$

$$
\begin{aligned}
l & =8.8 \mathrm{~m} \\
\mathrm{q} & =+1 \mathrm{e}
\end{aligned}
$$

$\int B d l \approx N * l * B=2 \pi p / q$

II.) The Acceleration

Where is the acceleration?
Install an RF accelerating structure in the ring:

$$
\begin{gathered}
B * \rho=p / e \\
\rho=\frac{p / e}{B}
\end{gathered}
$$

Largest storage ring: The Solar System

astronomical unit: average distance earth-sun
 1 AE $\approx 150 * 10^{6} \mathrm{~km}$ Distance Pluto-Sun ≈ 40 AE

Sonne
Merkur
Venus
Erde
Mars
Jupiter
Saturn
Uranus
Neptun

III.) Focusing Properties - Transverse Beam Optics

classical mechanics:
pendulum

there is a restoring force, proportional to the elongation x :

$$
m * \frac{d^{2} x}{d t^{2}}=-c * x
$$

$$
x(t)=A^{*} \cos (\omega t+\varphi)
$$

Storage Ring: we need a Lorentz force that rises as a function of the distance to \qquad ? the design orbit

$$
F(x)=q^{*} v^{*} B(x)
$$

Quadrupole lenses to focus the beam

four iron pole shoes
of hyperbolic contour
linear increasing magnetic field

$$
B_{z}=g^{*} x, \quad B_{x}=g^{*} z
$$

Maxwell's equation at the location of the beam ... no current, no electr. field

$$
\vec{\nabla} \times \vec{B}=0
$$

\rightarrow the B field can be expressed as gradient of a scalar potential V :

$$
\vec{B}=-\vec{\nabla} V, \quad V(x, z)=g x z
$$

Focusing forces and particle trajectories:

normalise magnet fields to momentum
(remember: $\boldsymbol{B} \boldsymbol{*} \boldsymbol{\rho}=\boldsymbol{p} / \boldsymbol{q}$)

Dipole Magnet

$$
\frac{B}{p / q}=\frac{B}{B \rho}=\frac{1}{\rho}
$$

Quadrupole Magnet

$$
k:=\frac{g}{p / q}
$$

Example: HERA Ring

Momentum:

$$
\mathrm{p}=920 \mathrm{GeV} / \mathrm{c}
$$

Bending field:

$$
\mathrm{B}=5.5 \mathrm{Tesla}
$$

Quadrupol Gradient
$\mathrm{G}=110 \mathrm{~T} / \mathrm{m}$

$$
\begin{aligned}
& \rightarrow \quad \mathrm{k}=33.64 * 10^{-3} / \mathrm{m}^{2} \\
& \rightarrow \quad 1 / \rho=1.7 * 10^{-3} / \mathrm{m}
\end{aligned}
$$

the focusing properties - Equation of motion

Under the influence of the focusing and defocusing forces the differential equation of the particles trajectory can be developed:

$$
x^{\prime \prime}+k^{*} x=0 \quad \text { horizontal plane }
$$

$x=$ distance of a single particle to the center of the beam
$x^{\prime}:=\frac{d x}{d s}$
vert. plane: $\quad k \Rightarrow-k$
if we assume

* linear retrieving force
* constant magnetic field
* first oder terms of displacement \boldsymbol{x}
... we get the general solution (hor. focusing magnet):

$$
\begin{aligned}
& x(s)=x_{0} * \cos (\sqrt{k} s)+\frac{x_{0}^{\prime}}{\sqrt{k}} * \sin (\sqrt{k} s) \\
& x^{\prime}(s)=-x_{0} \sqrt{k} * \sin (\sqrt{k} s)+x_{0}^{\prime} * \cos (\sqrt{k} s)
\end{aligned}
$$

$$
\binom{x}{x^{\prime}}_{s}=M *\binom{x}{x^{\prime}}_{0}
$$

Matrices of lattice elements

Hor. focusing Quadrupole Magnet

$$
M_{Q F}=\left(\begin{array}{cc}
\cos (\sqrt{K} * l) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} * l) \\
-\sqrt{K} \sin (\sqrt{K} * l) & \cos (\sqrt{K} * l)
\end{array}\right)
$$

Hor. defocusing Quadrupole Magnet

$$
M_{Q D}=\left(\begin{array}{cc}
\cosh (\sqrt{K} * l) & \frac{1}{\sqrt{K}} \sinh (\sqrt{K} * l) \\
\sqrt{K} \sinh (\sqrt{K} * l) & \cosh (\sqrt{K} * l)
\end{array}\right)
$$

Drift space

$$
M_{D r i f t}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
$$

Nota bene:
formalism is only valid within one lattice element where $\boldsymbol{k}=$ const in reality: $\boldsymbol{k}=\boldsymbol{k}(s)$
 or in english „we got it !"

* we can calculate the trajectory of a single particle within a single lattice element
* for any starting conditions $\mathrm{x}_{0}, \mathrm{x}^{\prime}{ }_{0}$
* we can combine these piecewise solutions together and get the trajectory for the complete storage ring.

$$
M_{\text {lattice }}=M_{Q F 1} * M_{D 1} * M_{Q D} * M_{D 1} * M_{Q F 2 \cdot}
$$

Example: storage ring for beginners

Dipole magnets and QF \& QD quadrupole lenses

tracking one particle through the storage ring

Contour of a particle bunch given by the external focusing fields (arc values)

Example: HERA Proton Bunch

	e	p
σ_{x}	1.0 mm	0.75 mm
σ_{z}	0.2 mm	0.46 mm
σ_{s}	10.3 mm	190 mm
N_{p}	$3.5 * 10^{10}$	$7.3 * 10^{10}$

3d contour calculated for the design parameters

(Z , X , Y)

Twiss Parameters

Astronomer Hill:

differential equation for motions with periodic focusing properties: „Hill's equation"

equation of motion: $\quad x^{\prime \prime}(s)-k(s) x(s)=0$
restoring force \neq const, $k(s)=$ depending on the position s $\boldsymbol{k}(\boldsymbol{s}+L)=k(s)$, periodic function

Example: particle motion with periodic coefficient

$$
x^{\prime \prime}(s)-k(s) x(s)=0
$$

we expect a kind of quasi harmonic oscillation: amplitude \& phase will depend on the position s in the ring.

The Beta Function

in this case the solution can be written in the form:

Ansatz: $\quad x(s)=\sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos (\psi(s)+\phi) \quad \varepsilon, \Phi=$ integration constants
determined by initial conditions
$\beta(s)$ given by focusing properties of the lattice \leftrightarrow quadrupoles
ε beam emittance $=$ woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.

Scientifiquely spoken: area covered in transverse x, x^{\prime} phase space
... and it is constant !!!

Ensemble of many (...all) possible particle trajectories

max. amplitude of all
$x(s)$ of a single particle particle trajectories

Beam Dimension: determined by two parameters

$$
\sigma=\sqrt{\varepsilon * \beta}
$$

$\varepsilon=$ area in phase space

Luminosity

3*10^10 particles

$$
L=\frac{1}{4 \pi e^{2} f_{0} n_{b}} * \frac{I_{e} I^{\prime} p}{\sigma_{\mathrm{x}}^{*} \sigma_{\mathrm{y}}^{*}}
$$

$$
\sigma=\sqrt{\varepsilon * \beta}
$$

Arc: regular (periodic) magnet structure:
bending magnets \rightarrow define the energy of the ring main focusing \& tune control, chromaticity correction, multipoles for higher order corrections

Straight sections: drift spaces for injection, dispersion suppressors, low beta insertions, RF cavities, etc.... ... and the high energy experiments if they cannot be avoided

Luminosity

$$
R=L * \Sigma_{\text {react }} .
$$

production rate of (scattering) events is determined by the cross section $\Sigma_{\text {react }}$ and a parameter L that is given by the design of the accelerator:
... the luminosity

$$
\boldsymbol{L} \propto \frac{1}{\sigma_{x}^{*} * \sigma_{y}^{*}}
$$

H1 detector: inelastic scattering event of e^{+} / p

Bibliography

1.) Edmund Wilson: Introd. to Particle Accelerators Oxford Press, 2001
2.) Klaus Wille: Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992
3.) Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. School: 5 th general acc. phys. course CERN 94-01
4.) Bernhard Holzer: Lattice Design, CERN Acc. School: Interm. Acc.phys course, http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm
5.) Herni Bruck: Accelerateurs Circulaires des Particules, presse Universitaires de France, Paris 1966 (english / francais)
6.) M.S. Livingston: J.P. Blewett, Particle Accelerators, Mc Graw-Hill, New York, 1962
7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997
8.) Mathew Sands: The Physics of e+e-Storage Rings, SLAC report 121, 1970
9.) D. Edwards, M. Syphers : An Introduction to the Physics of Particle Accelerators, SSC Lab 1990

