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Before we start

Please

Please ask questions anytime whenever you have one

Interrupt if I’m too fast, or

Speed me up if I’m telling you stuff which has been told several times
before
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The Standard Model: Particle Content

But particle physics is not only
about discovering particles

It’s also about understanding
the structures and interactions

A unified description of all
subatomic processes measured
(directly on earth, excluding
cosmology . . . ) with precision
better than 0.1 %

Down to a size of 10−18
m

Up to 10−10
s after the Big

Bang
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The Standard Model: Interactions

Test all of these interactions with LEP, B-factories and ILC
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Precision Tests of Loop Corrections

e+e− machines can see effects of virtual particles
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Excluded Preliminary

∆αhad =∆α(5)

0.02758±0.00035

0.02749±0.00012

incl. low Q2 data

Theory uncertainty

mLimit = 144 GeV
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Precision Tests of Loop Corrections

e+e− machines can see effects of virtual particles

M2
Z = M2 0th order

Z (1+O(m2
t )+O(lnm2

h)+· · · )

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02768

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1875

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957

σhad [nb]σ0 41.540 ± 0.037 41.477

RlRl 20.767 ± 0.025 20.744

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21586

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.398 ± 0.025 80.374

ΓW [GeV]ΓW [GeV] 2.140 ± 0.060 2.091

mt [GeV]mt [GeV] 170.9 ± 1.8 171.3
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Discovery Physics

Predicted discovery of the top quark at the Tevatron 1995:

The history of physics is full of predicted discoveries:
e+, n, π, q, g ,W ,Z , c , b

Most recent example: top quark

Future examples: Higgs, SUSY ???
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The Energy Frontier

The interplay between electron
and hadron machines has a long
and fruitful tradition

J/ψ at SPEAR (e+e−) and
AGS (proton fixed target)
Υ discovery at E288 (p fixed
target), precision B studies at
the e+e− B factories
. . .
top quark at LEP and
Tevatron

To be continued in the form of
LHC and ILC
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Complementarity of pp and e+e− machines

Proton-(Anti-)Proton Colliders
Higher energy reach (limited
by magnets)
Composite particles: unknown
and different colliding
constituents, energies in each
collision
Confusing final states

Discovery machines (W ,Z , t)

In some cases: precision
measurements possible (W
mass at the Tevatron)

Electron-Positron-Colliders
Energy reach limited by RF
Point like particles, exactly
definded initial system,
quantum numbers, energy,
spin polarisation possible
Hadronic final states with
clear signatures

Precision machines

Discovery potential, but not at
the energy frontier
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Some Discoveries at e+e− Machines

J/Ψ at SPEAR at SLAC gluon at PETRA at DESY
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Other Examples for Precision Physics: Quark Mixing

Quark mass eigenstates = eigenstates
of the quark-Higgs-interaction

Quark mass eigenstates 6= eigenstates
of the weak interaction

Wqq′ vertex: transition between
different quarks: CKM matrix

Kobayashi, Maskawa 1973: If at least 3
generations, matrix can be complex ⇒
CP-violation

Prediction of the b and t mesons

Discovery of the b 1977

Precision tests at e+e− B-factories
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Summary for the Introduction

We need precision measurements of the fundamental structure of the
interactions

Discovery physics and precision physics have a long history of going
hand in hand

e+e− machines have been (DORIS,CLEO,PETRA,SLC,LEP,etc) and
still are (B-Factories) the most important tools for precision physics

The particle discovery potential of hadron colliders is better than at
e+e− machines, but . . .

But: the indirect energy reach of precision physics can be enourmous
(see e.g. B-Physics later)

Questions?
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LEP1
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CERN

LEP/LHC Tunnel
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LEP

LEP Tunnel

P. Bechtle: Physics at e+e− Colliders DESY Summer Student Lecture 20.08.2007 16



file=

Introduction
What do we know? Lessons from LEP and others

The International Linear Collider ILC
Physics at the ILC

How to design the best possible Detector

LEP1
LEP2
B-Factories

LEP

Circumference 27 km√
s 91.2GeV (LEP1) to 209GeV(LEP2)

Accelerating Gradient Up to 7MV/m (Superconducting cavities)
Number of Bunches 4 × 4
Current per Bunch ≈ 750µA

Luminosity at LEP1 24 × 1030 cm−2s−1 (≈ 1Z 0/s)
Luminosity at LEP2 50 × 1030 cm−2s−1 (≈ 3W +W−/h)
Interaction regions 4 (ALEPH,DELPHI,L3,OPAL)
Energy calibration < 1MeV (at Z 0)
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Data

Integrated Luminosities

1990 – ≈ 91GeV

1995 5 Million Z 0/exp.

1995 Test phase for
LEP2 130GeV

1996 161 − 172GeV

WW-Threshold

1997 – 183 − 209GeV

2000 10 000 WW-pairs/exp.
Searches for
new physics
0 (?) Higgs bosons

LEP was shut down and dismantled to make room for LHC in Nov. 2000
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LEP1
LEP2
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LEP Physics Program Overview

LEP1

Z 0 lineshape: Z 0 mass, Z 0/γ-interference, number of neutrinos, etc.

Precision tests of the QFD: Forward-backward asymmetries

Precision tests of QCD: Confirmation of SU(3)

Together with mW : Prediction of the top quark mass

Many other precision tests of the SM

LEP2

WW threshold: Non-abelian structure of the QFD

Precision W mass measurement

Many searches for new physics:

Higgs boson
Supersymmetry: χ±, χ0, ℓ̃, q̃
Technicolor etc.
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Detectors

ALEPH DELPHI

LEP data taking from 1989 to
2000√

s = 91 − 209 GeV
Overall L ≈ 2600 pb−1

> 20 × 106
Z on peak,

40000W
± pairs, 1200Z pairs

Support Tube

BGO

LuminosityM onitor

HadronCalorimeter

VertexChamber

e-

e+

Magnet Coil

Magnet Yoke

Muon Chambers
Magnet Pole

L3

L3

θ ϕ

x

y

z

Hadron calorimeters
and return yoke

Electromagnetic
calorimeters Muon

detectors

Jet
chamber

Vertex
chamber

Microvertex
detector

Z chambers

Solenoid and
pressure vessel

Time of flight
detector

Presampler

Silicon tungsten
luminometer

Forward
detector

OPAL
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Detector Technologies
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LEP1
LEP2
B-Factories

Particle Identification
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The Basic Process at LEP1
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Identifying Events at LEP1

e+e− → e+e−
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Identifying Events at LEP1

e+e− → µ+µ−

P. Bechtle: Physics at e+e− Colliders DESY Summer Student Lecture 20.08.2007 23

file=

Introduction
What do we know? Lessons from LEP and others

The International Linear Collider ILC
Physics at the ILC

How to design the best possible Detector
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Identifying Events at LEP1

e+e− → τ+τ−
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Identifying Events at LEP1

e+e− → qq̄
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Personal Selection of LEP Physics Topics

Z 0 mass measurement

Asymmetries: Electroweak interference

Testing QCD

W-Bosons: Their mass and their interactions

The hunt for the Higgs boson

Very personal selection, many more interesting topics will be left out
Search for

FIND CN ALEPH OR CN DELPHI OR CN L3 OR CN OPAL

in SPIRES yields
2403 publications, conference proceedings and thesis from the 4 LEP

collaborations
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3 Parameters for the Shape of the Differential

Cross-Section
2

dσ

dΩ
= NC

α2
em

4s

{

(1 + cos2 θ)
[

Q2
f − 2χ1vevf Qf − χ2(a

2
e + v2

e )(a2
f + v2

f )
]

+2cos θ [−2χ1aeaf Qf + 4χ2aeaf vevf ]}

χ1 =
s(s − M2

Z )

16 sin2 θW cos2 θW
(

(s − M2
Z )2 + M2

ZΓ2
Z

)

χ2 =
s2

256 sin4 θW cos4 θW
(

(s − M2
Z )2 + M2

ZΓ2
Z

)

ae = −1; ve = −1 + 4 sin2 θW ; af = 2If ; vf = 2If − 4Qf sin2 θW
Jump to Angular Distribution
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The Total Cross-Section

Perfectly described by the 3 non-digital parameters from before!

Theory curve is not the one from before but it includes radiative
corrections

Z 0 is a dramatic resonance!
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Z 0 Mass Measurement
Very important input to SM fits

Uncertainty is only 2.1MeV

Important to understand systematics of the beam energy measurement!
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Systematics: Beam Energy Measurement

Uncertainty is only 1MeV !
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Systematics: Tides

Moon pulls on earth – LEP
radius changes by ≈ 1mm

Corresponds to 10MeV energy
change!
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Systematics: Water Levels

Water levels in Lake Geneva
deforms the LEP ring

Correspinds to up to 20MeV

energy change!

P. Bechtle: Physics at e+e− Colliders DESY Summer Student Lecture 20.08.2007 30



file=

Introduction
What do we know? Lessons from LEP and others

The International Linear Collider ILC
Physics at the ILC

How to design the best possible Detector

LEP1
LEP2
B-Factories

Systematics: TGV

Correlations between TGV timetable and LEP

P. Bechtle: Physics at e+e− Colliders DESY Summer Student Lecture 20.08.2007 31

file=

Introduction
What do we know? Lessons from LEP and others

The International Linear Collider ILC
Physics at the ILC

How to design the best possible Detector

LEP1
LEP2
B-Factories

Beyond the Pure Cross-Section: Classifying Events

SM makes precise predictions for the branching ratios of the Z 0

Γνν =
GFM3

Z

12π
√

2
≈ 162MeV

Γee = Γµµ = Γττ = 4 sin4 θW Γνν ≈ 84MeV

Γuu = Γcc = 3

(

32

9
sin4 θW − 8

3
sin2 θW + 1

)

Γνν ≈ 287MeV

Γdd = Γss = Γbb = 3

(

8

9
sin4 θW − 4

3
sin2 θW + 1

)

Γνν ≈ 370MeV

(here: neglecting ther quark masses)

How can we measure the Γ, especially Γνν?
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Counting Neutrinos Using Photons
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Counting Neutrinos the Smart Way

Γtot = Γℓℓ + Γqq + NfamΓνν

Total width depends on the
number of neutrino families!

Result:
Nfam = 2.9841 ± 0.0083

Result before LEP: Nfam < 5.9
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Even more Detail: Angular Distributions

Linear Term in cos θW on page
Jump to Differential Cross-Section causes

a forward-backward Asymmetry
AFB :

AFB =

σ(cos θ > 0) − σ(cos θ < 0)

σ(cos θ > 0) + σ(cos θ < 0

Pure AFB is better than a fit to
the whole distribution, since
detector systematics cancels
(as long as the detector is
symmetrical)
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Measuring the Vector- and Axialvector Couplings
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Measuring sin2
θW Using Angular Distributions

Asymmetry measurements can
be interpreted as measurements
of sin2 θW
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Predicting the Top Quark Mass

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02768

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1875

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957

σhad [nb]σ0 41.540 ± 0.037 41.477

RlRl 20.767 ± 0.025 20.744

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21586

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.398 ± 0.025 80.374

ΓW [GeV]ΓW [GeV] 2.140 ± 0.060 2.091

mt [GeV]mt [GeV] 170.9 ± 1.8 171.3
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Testing the Theory of the Strong Interaction: QCD

Due to the confinement of the strong interaction: quarks and gluons
can’t be observed as frea particles, but manifest themselves as jets
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Hadronisation
Process of Hadronisation can be described in 4 steps:

I EW creation (exactly calculable)
II Parton shower (perturbative QCD)
III Fragmentation into hadrons (only phenomenological models)
IIII Decay of hadrons (mostly phenomenological)
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Cluster Algorithms

Quarks and gluons show up as jets. Need a definition of a jet!
Jet Finding Algorithm

Start with treating all reconstructed particles as ’pseudo jets’
For all pairs of pseudo-jets calculate their distance

yik =
2min(E 2

i ,E
2
k )(1 − cos θik)

E 2
vis

The pair ik with the smallest distance yik is paired into a new
pseudo-jet, unless its distance is larger than a free parameter ycut.
Repeat this until no pseudo-jets can be paired any more.
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Testing QCD Using the Number of Jets

The number of jets depends on
how closely one looks at them
→ ycut
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Example for Measuring αS

Measure the strong coupling
constant αS

But there are more fancy
methods to test QCD, which we
cannot cover here
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Summary LEP1

Precision study of all properties of the Z 0 boson

Triumph of the Standard Model

Sensitivity to mt before its discovery!

Indirect sensitivity on mh

Lots of precise QCD tests

SM looks extremely consistent:

1 − sin2 θW =
MW

MZ

We need to know more about MW !
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Increasing the Energy: LEP2

Precision measurement of MW

Testing the non-abelian structure of the SM: WWZ/γ interaction

Find the Higgs boson

Searches for New Physics
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Measuring the W mass

No resonance: Much smaller cross-section that the Z 0

Mostly only pair production

Expect a few thousand events per year

Again, attempt precision measurements of
Mass
Cross-section curve
Branching ratios
Self-couplings
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WW Production in the Detector

Three different event topologies:
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WW Production in the Detector

OPAL √s=189 GeV
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 Summer 2006 - LEP Preliminary

Error ≈ 15 times larger than for Z0
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Non-abelian Structure of the SM Gauge Interactions

SM predicts WW γ and WWZ

vertex:

First direct observation of gauge
self-couplings in EW interactions!
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Non-abelian Structure of the SM Gauge Interactions

SM predicts WW γ and WWZ

vertex:

First direct observation of gauge
self-couplings in EW interactions!
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More Precise Again: Using Angular Correlations
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Too Precise Again: Loops at LEP2

Information from the direct measurement of MW and mt can be
compared to their prediction from LEP1, for different mh:
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m
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  [
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68% CL

∆α

LEP1 and SLD

LEP2 and Tevatron (prel.)

They agree!

They prefer rather light mh (in
the context of the SM)
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Putting it all Together, Again

Perform a global fit to all measurements to get the most precise
indirect measurement of mh:
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∆χ
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Excluded Preliminary

∆αhad =∆α(5)

0.02758±0.00035

0.02749±0.00012

incl. low Q2 data

Theory uncertainty

mLimit = 144 GeV

From the fit:
mh < 155GeV @ 95 % CL

What’s the yellow bar?
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The Higgs Boson

H
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The Higgs Boson

H
The Higgs boson fullfills

(at least!) 3 wishes at once!
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The Higgs Boson

H

The SM is the most complete
theory of fundamental particles
and interaction that we ever had

But without the Higgs:

WW scattering crosses the
unitarity bound at√

s ≈ 850GeV

SUL(2) × UY (1) does not allow
masses for the gauge bosons
and the fermions

The Higgs allows to make the
photon massless and uncoupled
to the neutrinos at the same
time
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The Higgs Mechanism
Dynamic generation of mass:

Spontaneous symmetry breaking: Higgs field is always present

Massless fermion interaction with the non-vanishing background field:

H H H
1/q 1/q1/q

(g  v/    )2f
+ + + ...

f

Geometric sum yields massive propagator:

1

q/
+

1

q/

(

gf v√
2

)

1

q/
+ · · · =

1

q/

∞
∑

n=0

[(

gf v√
2

)

1

q/

]n

=
1

q/ −
(

gf v√
2

)

Effective mass of the fermion

Similar process for gauge bosons
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Hunting for the Higgs: Branching Ratios

If within the kinematic reach, the SM Higgs can be found for sure at
LEP2

Dominant decays:

h → bb̄

h → τ+τ−
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Hunting for the Higgs: Signatures

The different Higgs
decays and the different
Z desays together define
the signatures:

For mh < 115GeV:
More than 80 % of all
decays

Typcal selection
efficiencies: 50 %
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A Higgs Candidate

A nice Higgs candidate from ALEPH (mh = 115GeV):
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Do we see a Higgs mass peak?

Are there many of these candidates?
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How significant is the small excess? Need advanced statistical analysis
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Is there a Significant Excess?
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L
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LEP

Observed
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(1 − CLb) is a measure of the
’background-likeness’ of an
experiment. If (1 − CLb) is e.g.
5%, then the probability of this
outcome to be caused by a
fluctuation of the background is
5%

No excess above 3σ

Be aware of the ’look-elsewhere’
effect!
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No Significant Excess: What’s the Limit?
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CLs is a measure of how
signal-like the outcome of an
experiment is. If CLs is small, it
is very unlikely that there is a
signal. Hence, a 95 % CL
corresponds to CLs = 0.05

Final word from LEP on the SM
Higgs:

mh > 114.4GeV
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Summary for LEP2

Precision study of the W mass, branching fractions and self-coupling:
Another triumph of the SM

The Higgs-Boson has been searched with a lot of effort in a large
number of channels

No significant excess found.

mh > 114.4GeV @ 95 % CL in the SM

Limits on a large number of other new physics phenomena (SUSY, etc)

No evidence for physics beyond the SM

Questions?
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BB Oscillations

ARGUS experiment at DORIS
at DESY

Υ(4S) → B0B̄0 → B0
1B0

2

B0
1 → D∗−µ+νµ,D

∗− → D̄0π−

B0
2 → D∗−µ+νµ,D

∗− → D̄−π0
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B-Factories Everywhere

Look for CP violation in the B-System:

Is the SM CP-violation explained by the complex elements Vqiqj
of the

CKM matrix?

Are there other sources of CP violation?
Come back to that question later: CP-violation in new physics models
such as SUSY
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An Example: BaBar

415 fb
−1 at

√
s = 10.58GeV ⇒ 460 Million BB̄ (still growing at

> 10BB̄/s)
Off-Peak datataking (production of u,d, s, c,ℓ) at 10% of the
luminosity

P. Bechtle: Physics at e+e− Colliders DESY Summer Student Lecture 20.08.2007 64

file=

Introduction
What do we know? Lessons from LEP and others

The International Linear Collider ILC
Physics at the ILC

How to design the best possible Detector

LEP1
LEP2
B-Factories

An Example: BaBar
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Parametrizing the SM CP-Violation

Unitary 3D-matrix has four degrees of freedom: 3 real, 1 complex

Can’t put the complex phase everywhere . . .

In this parametrization: Make Vtd and Vub complex, all others real
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Measuring the Angle β
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Measurement of sin 2β in the Golden Decay

The only complex element comes from Vtd

Measure time evolution ∆t for B0 and B̄0
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Measurement of sin 2β in the Golden Decay

Clear difference in time
evolution between B0 and and
B̄0!

We can do this for many many
decays, each sensitive on
different elements of the CKM
triangle
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Overconstraining the CKM Triangle
Measure many more quantities sensitive on Vij :

Though heavily overconstrained: SM looks consistent again!
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Overconstraining the CKM Triangle
Measure many more quantities sensitive on Vij :

Though heavily overconstrained: SM looks consistent again!
Damn!
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Indirect Energy Reach of Precision Physics
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ū

b

ū
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Before we Begin Searching for the Unexpected . . .

Miracles and open questions – incomplete

Dark Matter

Explanation for EWSB and Hierarchy problem

Gauge Coupling Unification

Matter Asymmetry of the Universe

Smallness of the neutrino masses and absence of their righthanded
couplings

Mass hierarchy of the SM particles

Dark Energy

How does gravity fit into the picture?
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Before we Begin Searching for the Unexpected . . .

Miracles and open questions – incomplete

Dark Matter

Explanation for EWSB and Hierarchy problem

Gauge Coupling Unification

Matter Asymmetry of the Universe

Smallness of the neutrino masses and absence of their righthanded
couplings

Mass hierarchy of the SM particles

Dark Energy

How does gravity fit into the picture?

My favourite reason why the SM is wrong (i.e. incomplete):

qℓ = −nC (qu − qd)
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Summary: Lessons from LEP and others

The SM Gauge structure SUC (3) × SUL(2) × UY (1) is incredibly
successful

This means, any new physics must be suppressed at tree level ⇒ New
physics only in loops

WW production requires something which acts like the Higgs boson

The Higgs boson has not been found, if it exists, it is just light enough
for SUSY

B-Factories: The flavour structure of the SM is remarkably exact:
Again, new physics can’t enter at tree level, only loops with heavy
particles allowed
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Summary: Lessons from LEP and others

The SM Gauge structure SUC (3) × SUL(2) × UY (1) is incredibly
successful

This means, any new physics must be suppressed at tree level ⇒ New
physics only in loops

WW production requires something which acts like the Higgs boson

The Higgs boson has not been found, if it exists, it is just light enough
for SUSY

B-Factories: The flavour structure of the SM is remarkably exact:
Again, new physics can’t enter at tree level, only loops with heavy
particles allowed

For all considerations about how to best build an experiment for a
future collider, we need a toy model for the physics we might expect

SUSY fullfills most of the requirements of the previous and this slide,
hence: take SUSY as main example for the rest of the talk

P. Bechtle: Physics at e+e− Colliders DESY Summer Student Lecture 20.08.2007 72

file=

Introduction
What do we know? Lessons from LEP and others

The International Linear Collider ILC
Physics at the ILC

How to design the best possible Detector

The Standard Model and its (Cosmic) Problems
The ILC Physics Case: Overview
The Accelerator

Outline
1 Introduction

2 What do we know? Lessons from LEP and others
LEP1
LEP2
B-Factories

3 The International Linear Collider ILC
The Standard Model and its (Cosmic) Problems
The ILC Physics Case: Overview
The Accelerator

4 Physics at the ILC
SM Physics
New Physics: SUSY as a Model
Other New Physics

5 How to design the best possible Detector
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Let’s Concentrate on . . .

The source of the SM EWSB SM Higgs?

If the SM Higgs is found: Why is its mass not MGUT? Hierarchy
Problem

If some kind of Higgs is found: What is the origin of EWSB? Why is
there a Higgs potential with non-zero VEV?

What is dark matter?

How can the SM forces be unified? Unification of the gauge couplings

maybe also have a look at:

How to unify the SM forces with gravity?
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If it isn’t Dark it doesn’t Matter
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How do we Know About Dark Matter
In many models, the dark matter is
a thermal relic WIMP: Weakly
Interacting Massive (stable)
Particle

Once in thermal equlibrium,
they’ve ’frozen out’ due to the
expansion of the universe (Can’t
decay on their own – need a
partner to annihilate with)

Calculable density

Naturally appear in SUSY with
R-parity:

mDM ≈ 100 GeV

SM QFD couplings
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Why there must be New Physics at the Terascale

We expect new physics at the Terascale
≈ 1TeV

For theoretical reasons:

Without the Higgs: SM WW

scattering violates unitarity at√
s ≈ 1 TeV

Very severe fine-tuning problem
between mh and mGUT : Need new
physics below ≈ 1 TeV

For experimental reasons:

Blue-band-plot shows that something
like the Higgs must be there!
Otherwise, all precision data would be
wrong by orders of magnitude!
Dark matter
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Theory uncertainty

mLimit = 144 GeV
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The ILC Physics Case

Whatever we may find at the LHC – an e+e− Linear Collider will be
needed to study them

There are differnt possibilities:

A light Higgs is found: Study its properties and verify that it is
responsible for the generation of the SM particle masses
A heavy Higgs boson is found: Dito, and find out what’s wronf with the
precision data
New particles: Precision spectroscopy, measurement of spins, Quantum
numbers, cross-sections, BF, couplings . . .
No Higgs, no nothing: This is way beyond the SM! Find out what’s
wrong with the precision data

See hep-ph/0106315, hep-ph/0411159, hep-ph/0410364 for
details
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Linear vs. Circular

Synchrotron Radiation:

∆E ∼ E 4/(m4R): At LEP2:
4 GeV per turn per particle

Cost:

Circular:
CC = aR + b∆E =
aR + bE 4/(m4R)
Optimize for cost:
R ∼ E 2 → CC ∼ dE 2

Linear: CL = eL, L ∼ E

See E. Elsen’s lecture for more details
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The International Linear Collider
200 − 500GeV
∫

L = 500 fb
−1 in the first 4 years

Upgradeable to 1TeV

2 interaction regions

For more information and documentation, see
www.linearcollider.org
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Timeline for the ILC

From E. Elsen
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The ILC Machine

Main building block of the accelerator: Superconducting TESLA
cavities

Stage 1: 500GeV, gradient
31.5MV/m, length 25 km

Stage 2: 1TeV, gradient 35MV/m,
length 40 km
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Luminosity Requirements

1/s calls for high luminosity

1% precision: 10000 events

Need
∫

L = 500 fb
−1 for

σ = 20 fb

100 days at 5 × 1034
cm

−2
s
−1
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Some Typical Event Rates

Typical event rates for 500 fb
−1

P. Bechtle: Physics at e+e− Colliders DESY Summer Student Lecture 20.08.2007 84

file=

Introduction
What do we know? Lessons from LEP and others

The International Linear Collider ILC
Physics at the ILC

How to design the best possible Detector

The Standard Model and its (Cosmic) Problems
The ILC Physics Case: Overview
The Accelerator

RF Power

How much power does it take to accelerate the beams with the highest
possible luminosity L?

L =
ECM

ECM

· nbN
2frepHD

4πσxσy

Intrduce the beam power Pbeams = ηPRF = nbNfrepECM

⇒ L =
ηPRF NHD

4πσxσyECM

Luminosity is proportional to RF power PRF × RF→beams efficiency η

Some numbers: ECM = 500GeV,N = 1010, nb = 1000, frep = 10Hz

Pbeams > 8MW

For η ≈ 10%: PRF > 80MW
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Beamstrahlung
From power considerations
before: Need highly focused
bunches

Energy loss in collision due to
Beamstrahlung:

δBS =
∆E

E
=

ECM

σZ

(

N

σx + σy

)2

But: L ∼ 1/σxσy ⇒ choose flat
beams

1.5 % energy loss on average

≈ 100 000 γγ pairs per BX!

Intense backgrouns in the
forward direction, need high B

field to control e+e− pairs
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Backgrounds from Beamstrahlung

HZ → τ+τ−e+e− event
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Backgrounds from Beamstrahlung

HZ → τ+τ−e+e− event
Same event with 60 beam

background events overlayed

ILC: 337ns bunch spacing, 3000 bunches/train (1 ms), 5Hz bunch
train rate: Need fast time stamping, then very low backgrounds
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Another Unique Feature: Polarisation

Does not only increase the effective
luminosity . . .

But also allows to test the coupling
structure directly:

e.g. e+e− → χ+
1 χ

−
1 in t-channel production: direct sensitivity to χ±

1 L
and R couplings
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Outline
1 Introduction

2 What do we know? Lessons from LEP and others
LEP1
LEP2
B-Factories

3 The International Linear Collider ILC
The Standard Model and its (Cosmic) Problems
The ILC Physics Case: Overview
The Accelerator

4 Physics at the ILC
SM Physics
New Physics: SUSY as a Model
Other New Physics

5 How to design the best possible Detector
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Profiling the Higgs

The Higgs is the last missing particle of the SM, the most complete
(wrong) theory ever.

The Higgs is the most likely window of the SM to new physics
(hierarchy problem, first fundamental scalar)

If the Higgs is found and nothing else, the study of its properties will
be the best way forward towards a more complete theory

It is not enough to find something which looks like the Higgs (LHC can
do that). We need to make sure that it fulfills the properties of the SM
Higgs.

Measure mass, width, absolute couplings to fermions and bosons,
quantum numbers, self coupling with high precision

P. Bechtle: Physics at e+e− Colliders DESY Summer Student Lecture 20.08.2007 90



file=

Introduction
What do we know? Lessons from LEP and others

The International Linear Collider ILC
Physics at the ILC

How to design the best possible Detector

SM Physics
New Physics: SUSY as a Model
Other New Physics

SM Higgs Discovery
At the LHC after one year of
comissioning and a few years of
running, the SM Higgs will be
found for sure (if it exists)

Some properties can be
measured:

Mass
Some ratios of couplings

Effective Higgs rate (including
expected efficiencies and
backgrounds):

1 year @ LHC = 1 day at ILC
ILC can discover the Higgs
even if its rate is less than
1/100 of the SM rate
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SM Higgs Production at the ILC

√s
¬
 (GeV)

σ 
(f

b)

Higgs-strahlung
WW-fusion

mH = 200 GeV
mH = 240 GeV
mH = 280 GeV

mH = 320 GeV

10

10 2

300 400 500 600 700 800

Dominant production mechanisms: Higgsstrahlung and WW-fusion
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Higgs Spin

Higgs would be the first
fundamental scalar

Need to confirm its spin

Can use a threshold scan

If a particle has a non-zero spin,
it has more degrees of freedom

Hence, the turn-on is softer,
since more energy can be
dissipated in more degrees of
freedom
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Model Independent Higgs Mass and σ Measurement

Measure the Higgs mass and rate
independent of the Higgs decay!

Just use the two leptons from the Z 0
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Higgs CP

SM Higgs is CP even

Confirm that, using spin
correlations in h → ττ decays
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Heavier Higgs: Total Width

Γtot

ΓWW

Γbb

ΓZZ

SM prediction
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H → WW

H → ZZ

Background
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For large mh: Measure exp. width or use threshold scan

For small mh: Indirect technique: Measure σWW−fusion → calculate
Γh→WW ∗

Then measure B(h → WW ∗), calulate Γtotal = Γh→WW ∗/BWW +
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Higgs Mass

Use kinematic constraints

Precision below 0.1%!
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Higgs BR

need excellent vertexing!

As seen before: Higgs
couplings are proportional
to particle masses

In order to confirm that the
Higgs does the SM Higgs
job:

Measure all Higgs couplings
precisely!

To figure out the BR: Need
tagging of the decay modes

h → bb̄

h → cc̄
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Higgs BR
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Higgs Top Yukawa Coupling

Want: absolute top Yukawa coupling
Use combined information from ILC500 and LHC:

From LHC: rate of gg , qq → tt h; (h → bb,WW ) is proportional to
gtt × gbb/WW

From ILC500: B(h → bb,WW ) absulte measurement of gbb, gWW

Or simply use ILC1000 . . .

P. Bechtle: Physics at e+e− Colliders DESY Summer Student Lecture 20.08.2007 100



file=

Introduction
What do we know? Lessons from LEP and others

The International Linear Collider ILC
Physics at the ILC

How to design the best possible Detector

SM Physics
New Physics: SUSY as a Model
Other New Physics

Cross-checking with Precise top Mass Measurement
Check ghtt vs. SM expectation

Need: A very precise top quark
mass measurement!

Achieve this via threshold scan
(50MeV uncertainty)

Width uncertainty ≈ 3%

This is very important:

Presently the largest source of
uncertainty of many SM
calculations
Top quark might be an
interesting window towards
new physics, due to its
extremely large mass (and
ghtt ≈ 1)
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Finally: Higgs Self-Coupling

Again: Measure precisely
whether the observed particle is
the SM Higgs

Check λ = m2
h/(2v

2)

We need highest energies
(1TeV), highest luminosities
(1 ab

1) and best detectors for
that!

Overconstrain this!
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Higgs-Self-Coupling Signal

Use e+e− → hhZ → 6j

Calculate
Dist =
√

∑3
i=1(m

i ,rec
jj − mi ,target)2

Only a few tens of events
for

∫

L = 1 ab
−1

Need highest precision
calorimetry in dense 6 jet
environment
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Precision: Combining the Information

Assume one Higgs is found
and nothing else

How precisely do we know
it’s the SM Higgs?
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What if there is no Higgs?

Either there is something seriously wrong with the EW precision data

Or there is a new strong force in WW scattering

Something new must be in the loops
in the WWZ/γ coupling, otherwise

the SM is mathematically
inconsistent

Achievable precision on non-SM
couplings
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SM Higgs Summary

If the SM HIggs exist, Tevatron or LHC will find it

The ILC will measure al its properties with precision between 10% and
0.1%

This will allow to verify or falsify the SM Higgs mechanism

If no Higgs is found, the ILC will be very useful to explore alternate
mechanisms
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SM Higgs Summary

If the SM HIggs exist, Tevatron or LHC will find it

The ILC will measure al its properties with precision between 10% and
0.1%

This will allow to verify or falsify the SM Higgs mechanism

If no Higgs is found, the ILC will be very useful to explore alternate
mechanisms

In the most unfortunate case:
If nothing new is found, the ILC is the most ideal tool we can think of

Questions?
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SUSY Precision Physics

Use the Minimal Supersymmetric Standard Model MSSM as a model
for new physics.

It provides a wide variety of signatures → good model for making sure
the detector and machine is sensitive to a wide variety of features

Why else?
SUSY solves the hierarchy problem
SUSY naturally explains the EWSB
SUSY provides dark matter
SUSY is compatible with all precision data and can accomodate funny
little features like (g − 2)µ

Together with SU(5), SUSY exactly predicts sin2 θW

The MSSM will bring:
An extended Higgs sector
Partners for every SM particle with the same couplings and quantum
numbers, but with different spin
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MSSM Higgs Bosons

In order to cancel triangular
divergencies, the MSSM needs
two Higgs doublets

We get 5 degrees of freedom:

h,H,A,H±

Most challenging: Decoupling
limit mA → inf

h becomes SM-like
H ,A,H± degenerate
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MSSM Higgs Bosons

In order to cancel triangular
divergencies, the MSSM needs
two Higgs doublets

We get 5 degrees of freedom:

h,H,A,H±

Most challenging: Decoupling
limit mA → inf

h becomes SM-like
H ,A,H± degenerate
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MSSM Higgs Bosons at LHC

Due to couplings and backgrounds, the LHC can not find all MSSM
Higgs bosons for all possible choices of parameters
Might need the ILC as discovery machine
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Heavy MSSM Higgs Bosons at ILC
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Very clear discovery signal in e+e− → HA → bb̄ bb̄

Disadvantage: pair production, reach only up to
√

s/2

Example for mA = 250GeV,mH = 300GeV,
√

s = 800GeV
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SUSY Particle Spectrum

There is a wide variety among
the possible particle spectra,
depending on the SUSY
breaking scheme (105
parameters, etc)

Generally:

Squarks are on average
heavier than gauginos and
sleptons
Third generation sparticles are
lighter and have a larger
splitting than the others
Often: many squarks directly
not obvservable at ILC1000
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SUSY Particle Spectrum

There is a wide variety among
the possible particle spectra,
depending on the SUSY
breaking scheme (105
parameters, etc)

Generally:

Squarks are on average
heavier than gauginos and
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SUSY Particle Production
Unique option in e+e−: Very
precise mass deterimination via
threshold scan

Many different modes with
potentially many different decay
channels at the same time:
SUSY can be the biggest
background for SUSY!

Strategy: First analyze
continuum, then go for some
specific dedicated threshold
scans

Hence: Find Higgs bosons,
sleptons and gauginos in the
continuum
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Chargino and Neutralino Production

SUSY particles are pair
produced (in R-Parity
conserving models, which
are the only ones with dark
matter candidate)

They decay into the LSP
and SM particles

Neutralinos similar (replace W by Z , ν by ℓ, etc.)
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Charginos

We can find charginos in very clean
channels

But we do not just want to find
them! We want to measure their
composition (i.e. understand SUSY
breaking)!
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Neutralinos

Pair production as for χ±

Most copious mode
e+e− → χ0

1χ
0
1 not observable

SUSY background most
important!

As for χ±: Polarisation essential
for unraveling the mixing →
SUSY breaking
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Sleptons

2-body kinematics: infer mµ̃

from edges

Pair production, here:
e+e− → µ̃+µ̃−
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Slepton Properties

Also For Sleptons: Measure all properties
precisely

Mass: ∆m ≈ 50 − 500MeV

Couplings to left and right-handed particles

Same couplings as in the SM!
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Observables and Parameters
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Reminder: SUSY Breaking

SUSY is a brilliant idea . . .
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Reminder: SUSY Breaking

SUSY is a brilliant idea . . .

But it must be broken

SUSY breaking can be done in
an awful lot of different ways

We parametrize our ignorance in
the most general way: 105 new
free parameters

Understanding SUSY means to
understand the SUSY breaking

Analogy: Our biggest mystery
about the SM: EWSB!

How do we do that?
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MSSM Parameters

General parametrization of minimal SUSY and SUSY breaking: Lsoft

105 free parameters

Assume:

No complex phases
No mixing between generations (and between q and ℓ)
No mixing in first and second generation

24 additional parameters are left:

Higgs sector: tanβ,mArun

Gaugino sector: µ,M1,M2,M3

Squark sector: Aq,MuL
,MuR

,MdR

Slepton sector: Aℓ,MℓL
,MℓR

Understand theory and observables ⇔ Measure parameters

How do we understand SUSY breaking?
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Using Highest Precision to Put it All Together

Fit the MSSM parameters to the observables from all possible sources:
LHC, ILC, Tevatron, B-factories, etc.

Bottom-up approach

To be unbiased: Use no prior knowledge of the parameters at any step

Provide easy user interface for measurements, parameter definitions
and output

Goals:

Show that unambiguous parameter determination without human bias is
possible
Determine precision of parameter measurements
Test the necessary experimental and theoretical precision
Study comparisons of models: MSSM vs. NMSSM etc.
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SPS1a’ MSSM Scenario Fit with ILC and LHC

Observables

Observables:

SM observables mZ ,mW ,GF ,mt , . . .
Higgs sector masses from 500 GeV and 1 TeV LC
All accessible sparticle and gaugino masses from LHC and LC with
realistic uncertainties from hep-ph/0410364

LC cross sections at 400,500,1000 GeV, polarisation LR, RL, LL and RR
h and largest t̃1 BR’s

Assumptions for this test:

Unification in the first two generations

Two fits:

Theory uncertainty only on mh

Theory uncertainty on all masses (hep-ph/0511344)
and 2× larger σ uncertainties
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ILC + LHC MSSM Fit Results

D
on

’t
re

ad
al

l
n
u
m

b
er

s!

Parameter “True” value Fit value Uncertainty Uncertainty
(exp.) (exp.+theor.)

tanβ 10.00 10.00 0.11 0.15
µ 400.4 GeV 400.4 GeV 1.2 GeV 1.3 GeV
Xτ −4449. GeV −4449. GeV 20. GeV 30. GeV
MẽR

115.60 GeV 115.60 GeV 0.27 GeV 0.50 GeV
Mτ̃R

109.89 GeV 109.89 GeV 0.41 GeV 0.60 GeV
MẽL

181.30 GeV 181.30 GeV 0.10 GeV 0.12 GeV
Mτ̃L

179.54 GeV 179.54 GeV 0.14 GeV 0.19 GeV
Xt −565.7 GeV −565.7 GeV 3.1 GeV 15.4 GeV
Xb −4935. GeV −4935. GeV 1284. GeV 1825. GeV
MũR

503. GeV 503. GeV 24. GeV 27. GeV
Mb̃R

497. GeV 497. GeV 8. GeV 15. GeV
Mt̃R

380.9 GeV 380.9 GeV 2.5 GeV 3.9 GeV
MũL

523. GeV 523. GeV 10. GeV 15. GeV
Mt̃L

467.7 GeV 467.7 GeV 3.1 GeV 5.1 GeV
M1 103.27 GeV 103.27 GeV 0.06 GeV 0.14 GeV
M2 193.45 GeV 193.45 GeV 0.10 GeV 0.15 GeV
M3 569. GeV 569. GeV 7. GeV 7. GeV
mArun 312.0 GeV 311.9 GeV 4.6 GeV 6.9 GeV
mt 178.00 GeV 178.00 GeV 0.050 GeV 0.108 GeV

χ2 for unsmeared observables: 5.3 × 10−5
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Evolution to the GUT Scale
Based on the results of the low-energy parameter fit:

The precision of the ILC is a
telescope to the highest energies!
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Large Extra Dimensions

Solves the hierarchy problem: New physics already at 1TeV instead of
MPLANCK = 1019 GeV
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Large Extra Dimensions

Measure number of extra dimensions via single photon production
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New Physics Summary

New physics related to EWSB is likely to appear at the Terascale

Supersymmetry is a perfect tool to optimize the new physics
performance of the machine and detector

Precision is king: Combination of hundreds of precise measurements
can be used to explore SUSY breaking mechanisms and test the
behaviour of theories up to MGUT ≈ 1016 GeV

Questions?
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Outline
1 Introduction

2 What do we know? Lessons from LEP and others
LEP1
LEP2
B-Factories

3 The International Linear Collider ILC
The Standard Model and its (Cosmic) Problems
The ILC Physics Case: Overview
The Accelerator
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SM Physics
New Physics: SUSY as a Model
Other New Physics

5 How to design the best possible Detector
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Reminder of the Requirements

The requirements from physics
processes:

Tracking: Higgs recoil mass
spectrum:
δ(1/p) = 7 × 10−5/GeV (1/10 LEP,
LHC)
2-lepton mass resolution < Z width
Vertexing: b - c quark separation:
δd0 = 5 × 10

p (GeV) µm (1/3 SLD)

for the mesurement of h→ cc̄

Calorimetry:
δEjet < 0.3

√

Ejet (GeV) (<1/2 LEP)
driven by h→WW, h→ZZ,
WW scattering
Hermeticity: missing energy signals
from SUSY
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Vertexing

For smallest possible material
budget:

< 0.1 X0 per layer
gas cooling, low power

For highest precision:

≤ 20 × 20µm pads
≈ 800 × 106 channels!
Innermost layer 1.5 cm from
the beam!

Problem: to keep occupancies
low, have to read out very fast
(50µs) during the bunch train
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Tracking

Tracking needs driven by

Higgs recoil analysis
Sleptom mass resolution
other new physics?

But it’s not only about resolution,
it’s also about robustness in dense
environments

Silicon or TPC options
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Calorimetry Challenge at the ILC
Need to study WW scattering → violates
unitarity if no Higgs

Background: ZZ

No kinematic constraint! Need great
calorimetry!

WW

ZZ

di−jet mass resolutionP. Bechtle: Physics at e+e− Colliders DESY Summer Student Lecture 20.08.2007 132
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Calorimetry at the ILC

Jet energy:
Ejet = Eneut. had. +Ephotons +Echarged

Fractions per jet:
13% Eneut. had., 11% Ephotons, 64% Echarged

Jet energy resolution: σ2
Ejet

=

σ2
Eneut. had.

+σ2
Ephotons

+σ2
Echarged

+σ2
conf.

For very good tracking: Take
Echarged from tracking

For good energy resolution: σconf.

dominates! Need tracking
calorimeter
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The CALICE Experiment

Most highly granular calorimeter

Full test setup, containing

Si-W ECAL with 30 layers,
target ∆E/E = 11%/

√
E

Stainless steel/scintillator tiles
sampling HCAL, 8000 channel
in 1 m

3

Tail catcher (or some kind of
muon system),
steel/scintillator bars
Readout of the 3 × 3 cm

2

scintiullator tiles in situ by
Silicon Photomultiplier SiPM

Currently in the test beam at
CERN
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Summary

e+e− physics has been the core of high energy precision physics over
the last decades

Results from LEP and the B-factories are still the strongest constraints
on the SM to date

We expect a faszinating future in the next years: LHC will shed first
light on the mysteries of Electroweak Symmetry Breaking

We expect the ILC to be the central precision tool to understand
EWSB, and whatever else is expecting us at the Terascale

The ILC project is in a very exciting phase: Designing and optimizing
the most precise high energy physics detector ever

Enjoy the rest of your stay at DESY!
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