- Use of Track Detectors for Momentum Measurement
- Gas Detectors
- Proportional Chamber
- Drift Chamber
- TPC
- MSGC, RPC, GEM
- Silicon Detectors
- Strip Detectors
- Pixel Detectors

Relative Momentum Error

For 3 points the relative momentum resolution is given by: $\frac{\sigma\left(p_{T}\right)}{p_{T}}=\frac{\sigma_{s}}{s}=\sqrt{\frac{3}{2}} \sigma(x) \cdot \frac{8 p_{T}}{0.3 B L^{2}}$

- degrades linearly with transverse momentum
- improves linearly with increasing B field
- improves quadratically with radial extension of detector

In the case of N equidistant measurements according to Gluckstern [NIM 24 (1963) 381]:

$$
\frac{\sigma\left(p_{T}\right)}{p_{T}}=\frac{\sigma(\kappa)}{\kappa}=\frac{\sigma(x) \cdot p_{T}}{0.3 B L^{2}} \sqrt{\frac{720}{(N+4)}} \quad \text { (for } N \geq 10, \text { curvature } \kappa=1 / \rho \text {) }
$$

Example: For $p_{T}=1 \mathrm{GeV}, L=1 \mathrm{~m}, B=1 \mathrm{~T}, \sigma(x)=200 \mu \mathrm{~m}$ and $N=10$ one obtains:

$$
\frac{\sigma\left(p_{T}\right)}{p_{T}} \approx 0.5 \% \text { for a sagitta } s \approx 3.8 \mathrm{~cm}
$$

Important track detector parameter: $\frac{\sigma\left(p_{T}\right)}{p_{T}^{2}}(\% / \mathrm{GeV})$

Measure sagitta s of the track. For the momentum component transverse to B field:

Units: $\quad p_{T}[\mathrm{GeV}]=0.3 B[\mathrm{~T}] \rho[\mathrm{m}]$

$\frac{L / 2}{\rho}=\sin \frac{\theta}{2} \approx \frac{\theta}{2}($ for small $\theta) \Rightarrow \theta \approx \frac{L}{\rho}=\frac{0.3 B \cdot L}{p_{T}}$

$$
s=\rho\left(1-\cos \frac{\theta}{2}\right) \approx \rho\left(1-\left(1-\frac{1}{2} \frac{\theta^{2}}{4}\right)\right)=\rho \frac{\theta^{2}}{8} \approx \frac{0.3}{8} \frac{L^{2} B}{p_{T}}
$$

For the simple case of three measurements: $s=x_{2}-\left(x_{1}+x_{3}\right) / 2 \Rightarrow d s=d x_{2}-d x_{1} / 2-d x_{3} / 2$ with $\sigma(x) \approx d x_{i}$ uncorrelated error of single measurement:

$$
\sigma_{s}^{2}=\sigma^{2}(x)+\frac{\sigma^{2}(x)}{4} \cdot 2=\frac{3}{2} \sigma^{2}(x)
$$

carsten.niebuhr@desy.de

Particle Detectors 2

The contribution to the momentum error from $M S$ is given by:
$\left.\frac{\sigma\left(p_{T}\right)}{p_{T}}\right|_{M S}=\frac{\sigma^{M S}(s)}{s}=\frac{\frac{L^{\prime}}{4 \sqrt{3}} \frac{13.6 \times 10^{-3}}{p \beta} z \sqrt{\frac{L^{\prime}}{X_{0}}}}{0.3 B L^{2} z /\left(8 p_{T}\right)}=\frac{52.3 \times 10^{-3}}{\beta B \sqrt{L X_{0} \sin \theta}}$ with $L^{\prime}=L / \sin \theta$ total path $p_{T}=p \sin \theta$
for $\beta \rightarrow 1$ this part is momentum independent!

\mathcal{L}

The combined total momentum error is:

$$
\left(\frac{\sigma_{p}}{p}\right)^{2}=\left(\sqrt{\frac{720}{N+4}} \frac{\sigma_{x} p \sin \theta}{0.3 B L^{2}}\right)^{2}+\left(\frac{52.3 \times 10^{-3}}{\boldsymbol{\beta B} \sqrt{L X_{0} \sin \theta}}\right)
$$

$$
+\left(\cot \theta \sigma_{\theta}\right)^{2}
$$

Example for momentum dependence of individual contributions

Until ≈ 1970 :

- optical measurements using
- bubble chambers
- emulsions
- spark chambers
- manual reconstruction
- can handle only very low data rates

BEBC bubble chamber

Particle Detectors 2

Primary and Total Ionisation Yield in Gases

Criteria for optimal momentum resolution:

- many measurement points
- large detector volume
- very good single point resolution
- as little multiple scattering as possible

Gas detectors provide a good compromise and are used in most experiments. However:

- per cm in Argon only ca. 100 electron-ion pairs are produced by ionisation (see next page)
- this has to be compared with the noise of a typical amplifier of ≈ 1000 e-
$\Rightarrow \quad$ a very efficient amplification mechanism is required

carsten.niebuhr@desy.de
Particle Detectors 2

Gas $\mathcal{A m p l i f i c a t i o n}$

For cylindrical geometry:

$$
E(r) \propto \frac{1}{r} \quad \text { and } \quad V(r) \propto \ln \frac{r}{a}
$$

- the primary electrons drift towards the positive anode
- due to $1 / r$ dependence the electric field close to very thin wires reaches values of $E>\mathrm{kV} / \mathrm{cm}$
- \Rightarrow in between collisions with atoms electrons gain enough energy to ionize further gas molecules
- \Rightarrow exponential increase in number of electron-ion pairs very close (few $\mu \mathrm{m}$) to the wire

$\stackrel{25 \mu \mathrm{~m}}{H}$

Number of electron-ion pairs created per unit length
in the avalanche per electron is given by the first
Townsend coefficient α :

- relation to cross section for ionisation:

$$
\alpha=\sigma_{i o n} \cdot \frac{N_{A}}{V_{M o l}}
$$

- number of produced ions: $n(x)=n_{0} \cdot \exp (\alpha(E) \cdot x)$
- the gas gain is given by:

$$
A=\frac{n}{n_{0}}=\exp \left[\int_{a}^{r_{c}} \alpha(r) d r\right]
$$

with a anode diameter and r_{c} distance to wire where avalanche starts

- example: Argon and $\mathrm{E}=100 \mathrm{eV}$:

$$
\sigma=3 \times 10^{-16} \mathrm{~cm}^{2} \quad \Rightarrow \alpha^{-1} \approx 1 \mu \mathrm{~m}
$$

Particle Detectors 2

> Avalanche Formation

- due to transverse diffusion a droplet like avalanche develops around the anode
- electrons are collected very fast ($\approx 1 \mathrm{~ns}$) mobility of electrons ≈ 1000 times larger than for ions
- the cloud of positive ions remains and slowly drifts towards the cathode

No electric field $(E=0)$: thermal diffusion

With electric field ($E>0$): charge transport and diffusion

carsten.niebuhr@desy.de

Signal Shape

The signals which are induced on anode and cathode come from the fact that charges move in the electric field between the electrodes: $d v=\frac{Q}{l C V_{0}} \frac{d V}{d r} \cdot d r$
Most of the electron-ion pairs are created very close to the anode wire \Rightarrow

- electrons only move a short distance in the electric field: $d r$ small
- in contrast the ions move all the way back to the cathode: $d r$ much larger
- \Rightarrow most of the signal is induced by the movement of the ions which takes ralativey long
- usually the signal has to be electronically differentiated

Modes of Operation of Gas Detectors

Family Tree of Gaseous Detectors

- Ionisation chamber
complete charge collection, but no charge amplification.
- Proportional counter:
above threshold voltage multiplication starts. Detected signal proportional to original ionization \rightarrow energy measurement ($\mathrm{dE} / \mathrm{d} x$) possible. Secondary avalanches have to be quenched. Gain $\approx 10^{4}-10^{5}$
- Region of limited proportionality: or streamer mode: strong photo emission \rightarrow secundary avalanches. Needs efficient quencher or pulsed HV. Gain upto $\approx 10^{9}$, hence simple electronics sufficient.
- Geiger-Müller counter: massive photo emission. Full length of anode wire affected. Stop discharge by HV break down. Strong quenchers needed.

13
Particle Detectors 2
carsten.niebuhr@desy.de
Multi Wire Proportional Chamber

Generalize principal of proportional tube to large area detector.
Multi Wire Proportional Chamber: MWPC
George Charpak 1968

- anode wires act as independent detectors

- capacitive coupling of negative signal from anode wire where avalanche is formed to neighbours is small compared to pulse, which is generated by ions drifting towards cathode
- furthermore development in electronics: possibility to read many channels in parallel $\rightarrow 10^{6}$ tracks per second
\Rightarrow Breakthrough in detector development
Nobelprize for physics 1992

carsten.niebuhr@desy.de
$\mathscr{M} \mathcal{W} \mathcal{P} \mathcal{C}$
Use of gold plated tungsten wires with diameter $15-30 \mu \mathrm{~m}$ as anode wires. Chamber walls made from glas fiber material (rigid, low mass). Thin metal foil acting as cathode (typically $d \approx 50 \mu \mathrm{~m}$). Typical dimensions: $d=2 \mathrm{~mm}, L=4 \mathrm{~mm}$.
Electrostatic potential in a planar MWPC given by:
$V(x, y)=-\frac{q}{4 \pi \varepsilon_{0}} \ln \left\{4\left[\sin ^{2}\left(\frac{\pi x}{d}\right)+\sinh ^{2}\left(\frac{\pi y}{d}\right)\right]\right\}$

resolution $\sigma=d / \sqrt{ } 12$ electric field lines

Measure arrival time t_{1} of electrons at anode wire relative to reference t_{0}.

TDC: Time to Digital Converter

- external definition of time reference t_{0} (here by fast scintillator signal)
- x-coordinate given by:

$$
x=\int_{t_{0}}^{t_{1}} v_{D}(t) d t
$$

- if drift velocity v_{D} constant over full drift distance: $x=v_{D}\left(t_{1}-t_{0}\right)=v_{D} \Delta t$
- advantage of drift chambers: much larger sensitive volume per read out channel

Examples for Cylindrical Driftchamber Geometries

cell of a "jet"-driftchamber
$v_{d r i f t} v s$ E-Field in various $\mathcal{A r g o n - M i x t u r e s ~}$

- strong dependence on the choice of the gas mixture
- details of the energy dependence of the ionisation cross section (Ramsauer minimum) result in a characteristic maximum of the E field dependence.
- for stable operation it is useful to operate in the maximum: $\frac{d v_{d r i f t}}{d E}=0$
- typical drift velocities : $v_{\text {drift }} \approx 2-10 \mathrm{~cm} / \mu \mathrm{s}=20-100 \mu \mathrm{~m} / \mathrm{ns}$
carsten.niebuhr@desy.de
18
Particle Detectors 2

Isocfrones \& Lorentzangle

The intrinsic position resolution is influenced by three effects:

- statistics of primary ionisation: point of origin of primary cluster varies by $\approx 100 \mu \mathrm{~m}$
- diffusion of electron cloud during it's drift to anode - $\sigma=\frac{1}{\sqrt{n}} \sqrt{\frac{2 D x}{\mu E}}$
- Lorentz effect
- limitations in time resolution of whole chain of electronic signal processing
- cabel
- pulse shaping
- definition of time refernce t_{0} etc

Particle Detectors

H1 Central Jet Chamber

- ≈ 15000 wires
- total force from wire tension ≈ 6 tons

Time Projection Chamber

In the seventies D.Nygren developed the Time Projection Chamber (TPC).

- large gas volume with one central electrode
- minimal amount of material
- electrons drift in strong electric field over distance of several meters to end walls where they can be registered for example with MWPCs
- readout of anode wires and cathode pads $\rightarrow x, y$
- drift time \rightarrow z
- \Rightarrow unambiguous 3d hit measurements
- diffusion strongly reduced, since $E \| B$ \Rightarrow electrons spiral around E-field lines: Larmor radius $<1 \mu \mathrm{~m}$
- laser calibration for precise v_{D} determination
- very good hit resolution and $\mathrm{dE} / \mathrm{dx}$ meas.
- long drift times $(\approx 40 \mu s) \Rightarrow$
- rate limitation
- very good gas quality required

achieved resolutions:
$\sigma_{\mathrm{r} \phi}=170 \mu \mathrm{~m}$

carsten.niebuhr@desy.de
Particle Detectors 2
Example $\mathcal{A L I C E} \mathcal{T P C}$ @ $\mathcal{L H C}$

Construction of $\mathcal{A L I C E}$ Field Cage

A specific problem in a TPC is presented by the ions drifting back to the central electrode. At high rates they disturbe the homogeneity of the electric field in the drift region. Solution by so-called gating:

- ions are collected on shielding grid
- only electrons from "interesting" tracks reach the amplification region; others are collected on gating grid
- this requires use of an external trigger

carsten.niebuhr@desy.de
Particle Detectors 2

$$
\text { Micro Strip Gas Chambers } \mathcal{M S} \mathcal{G C}
$$

Advantages

- very precise and small anode/cathode structures can be produced with lithographical methods \rightarrow very good position resolution
- high mechanical stability
- small drift distance for ions \rightarrow high rate capability

Measures against aging:

- carefully select materials for whole system
- highest gas quality - no impurities
- avoid excessive chamber currents
carsten.niebuhr@desy.de

Resistive Plate Chambers RPC

robust and simple detector

- no wires
- relatively cheap
- well suited for large areas (muon systems)
- fast signal
- < 5 ns (trigger)
- good rate capability
- few $\mathrm{kHz} / \mathrm{cm}^{2}$

After a discharge electrons are deposited on anode and positive ions on cathode

In the late 90's developed by F.Sauli at CERN [NIM A386 (1997), 531]

- typical gain of $\approx 10^{3}$ at 500 V
- can stack several stages on top af each other
- \rightarrow large total gain at relatively moderate HV

33
Particle Detectors 2
Detector ReV: GEM Readout for $\mathcal{T P C}$ at $I \mathcal{L C}$

- Narrow pad response function: $\Delta s \sim 1 \mathrm{~mm}$
- Fast signals (no ion tail): $\Delta t \sim 20 \mathrm{~ns}$
- Very good multi-track resolution: $\Delta \mathrm{V} \sim 1 \mathrm{~mm}^{3}$ - Standard MWPC TPC ~ $1 \mathrm{~cm}^{3}$
- Ion feedback suppression: I+/I- ~ 0.1\%

- Rate capability ~ 1 MHz mm
- Position accuracy (MIPs) $\sigma \sim 60 \mu \mathrm{~m}$
- Radiation tolerance $>100 \mathrm{mC} \mathrm{mm}$
- corresponds to $\sim 10^{14}$ MIPs cm^{-2}

carsten.niebuhr@desy.de
Particle Detectors 2

Comparison of various Trackdetectors

Detector type	Positionresol. [$\mu \mathrm{m}$]	Deadtime [ms]	Electron readout	Advantage	Problems
Detektortyp	Ortsauflösung [$\mu \mathrm{m}$]	Totzeit [ms]	elektr. Auslese	Vorteile	Nachteile
Kernemul	2-5	-	nein	rtsa	kein
Blasenkammer	8-100	$\sim 10^{2}$	nein	-	nicht triggerbar
Funkenkammer	$100-200$	0.01-1	ja	einf. Aufbau	Totzeit
Streamerkammer	$30-300$	0.03-0.1	nein	-	Totzeit
Proportionalkammer	100-700	-	ja	Zeitaufl.	-
Driftkammer	$50-200$	-	ja	Ortsaufl.	-
Mikrostreifenkammer	20-70	-	ja	Ortsaufl.	
Streifendetektor	3-7	-	ja	Ortsaufl.	
Silizium-Driftkammer	$5-20$	-	ja	Ortsaufl.	Fertigung
CCD	5×6	-	ja	Ortsaufl.	serielle Auslese
Pixeldetektor	3×15	-	ja	Ortsaufl.	Fertigung

