
Domain Adversarial Learning to
Reduce Training Bias in ttH(bb)

Search at ATLAS

Ilyas Fatkhullin

Moscow Institute of Physics and Technology, Russia

Supervisors: Paul Glaysher, Judith Katzy

September 5, 2019

Abstract

The application of Neural Networks with a gradient reversal layer to the ttH(bb)
search at ATLAS is studied. Feature distributions of the background sample
slightly vary from one simulations to another. Therefore the classification model
may show a training bias towards a particular simulation. Adversarial domain
adaptation techniques are utilized to reduce the training bias and obtain better
classification performance.

Keywords: Adversarial Training, Domain Adaptation, LHC, Higgs

1

Contents

1. Introduction 3

2. Theory on domain adaptation 3
2.1. Domain Divergence and Generalization Bound 4
2.2. Adversarial Domain Adaptation Neural Network 6

3. Data 7

4. Details of DANN Implementation and Optimization 9
4.1. Implementation . 9
4.2. Optimization . 9

5. Results 10
5.1. Response of NN . 11
5.2. Significance calculation and ROC curves 11
5.3. Looking at training curves . 14

6. Conclusion 14

7. Acknowledgements 15

A. Variable list for NN training 16

2

1. Introduction

Machine Learning (Multivariate Analysis) techniques are widely used in event selection
in High Energy Physics (HEP) [1; 2]. Nowadays there is a special interest in the applica-
tion of Neural Networks (NN) for this task due to the increase in dimensionality of col-
lected data. However, when training NN classifier on simulated data one should be aware
of its generalization capabilities since simulations may not describe physics precisely and
there is a risk of catching wrong patterns of a particular simulation. Development of
Domain Adaptation Theory [3] allows to make weaker assumptions on generated data
and potentially reduce the training bias and achieve better generalization capability of
the classification method. For example, one may have labelled simulated data and want
to train a classifier that performs well on real data. Domain adaptation tries to achieve
this goal by using additionally unlabelled real data to provide a successful transfer.
The detailed study of the Higgs boson including its rare production modes is a primary
activity of the LHC experiments. We consider the search for the ttH production mode,
in which the Higgs boson is produced together with a top anti-top quark pair Fig. 1 (left)
at the ATLAS experiment. A measurement of this process allows to test a fundamental
property of the Standard Model, namely the Yukawa coupling between the Higgs boson
and the top quark. The most probable decay of the Higgs boson is to two bottom quarks
(measured as b-jets) and the signal needs to be distinguished from a large background of
tt+b-jets Fig. 1 (right). The expected signal and background signatures are very similar
and significant separation is achieved through a neural network or Boosted Decision Tree
classifier, trained on simulated, labelled Monte Carlo data. The current results for the
ttH (H → bb) search [1] was limited by the modelling uncertainty of the background,
calculated as the discrepancy of the classifier response to different Monte Carlo gener-
ators. This uncertainty is equivalent to a training bias towards a specific Monte Carlo
generator, which we show to mitigate though adversarial domain adaptation.
In this paper we study adversarial Domain Adaptation Neural Network (DANN) with
Gradient Reversal Layer [4; 5] for analyzing simulated data. This paper is organized as
follows: in Section 2 we introduce necessary notations and key theoretical results (mainly
from the works of Ben-David et al. [3; 6]) to support the usage of DANN architecture.
In Section 3 and 4 we provide a description of our dataset construction, implementation
and experiments. Finally, we present the overall results in Section 5. Related work of
A. Ryzhikov and A. Ustyuzhanin [7] also addresses the problem of training on simulated
data for HEP.

2. Theory on domain adaptation

The optimization and evaluation of supervised learning methods generally assumes that
the training and validation instances are both sampled from the same family of proba-
bility density functions. For the example presented this is not the case, as the wish is to
train on the simulated data and apply the classifier to real collision data. In Fig. 4 and
5 examples of the training variables are shown, from which one can see that difference in

3

Figure 1: Feynman diagrams for ttH-signal (left) and tt+bb-background (right)

the alternative background models is of equivalent size as the difference between signal
and background models. Theory of transfer learning is designed to mitigate this prob-
lem. Let us introduce the notations relevant to this study where alternative simulation
models are treated as different data domains.
Notation. We consider a binary classification task, where X denotes an input space and
Y = {0, 1} a set of classes. Let S and T be two datasets obtained from distributions DS

andDT correspondingly. Both of these distributions are defined on X×Y and are referred
to as source (DS) and target (DT) domains. Let us also denote H = {h|X → Y} as a
hypothesis space, which represents a subspace of all possible maps from X to Y . We define
the risk εD(h) of a hypothesis h under distribution D as εD(h) = P(x,y)∼D(h(x) 6= y).
We refer to the corresponding empirical risk as ε̂D(h), which is calculated according to
classical definition of probability. Further we also denote corresponding definitions of
empirical quantities by adding a hat on top. The main goal is to build a classifier with
a low risk under target distribution DT while having no information about the labels on
DT . Note that in our study we work with simulated data (see Section 3) only and none
of the simulations can be given a preference to be called target, therefore after Section 3
we stick to different notation and denote two datasets Source 1 (S1) and Source 2 (S2).
Most recent works on domain adaptation introduce some similarity measures between
two domain distributions and try to minimize it along with usual classification loss.
Successful examples of similarity measures are Maximum Mean Discrepancy (MMD)
[8], High Order Moments [9], Wasserstein Distance [10] and H-divergence [4]. Further
we follow the latter approach, define the notion of H-divergence and present theoretical
results by Ben-David et al. [6] to justify the idea of DANN architecture.

2.1. Domain Divergence and Generalization Bound

Definition 1 Given two domain distibutions DS, DT over X ×Y and hypothesis space
H. H-divergence between DS and DT is defined as

dH(DS,DT) = 2 sup
h∈H
|P(x,y)∼DS

(h(x) = 1)−P(x,y)∼DT
(h(x) = 1)| (1)

That is H-divergence reflects the ability of hypothesis class H to distinguish between
two distributions DS and DT . Therefore minimization of this distance within fixed
hypothesis space H results in a better generalization capability of the classifier. The

4

advantage of this particular definition of distance is that in the applications (given H
with finite VC-dimension) it can be well-estimated by finite samples from DS and DT .
Ben-David et al. in [3] obtain the following results:

Statement 1 For a symmetric hypothesis class H (one where for every h ∈ H, the
inverse hypothesis 1 − h is also in H) and samples S, T of size m, the empirical H-
divergence is

d̂H(S, T) = 2

(
1−min

h∈H

[1

m

∑
x:h(x)=0

I[x ∈ S] +
1

m

∑
x:h(x)=1

I[x ∈ T]
])

(2)

Statement 2 (Generalization Bound) Let H be a hypothesis class of V C-dimension d.
With probability 1− δ, δ ∈ (0, 1) over the choice of samples S ∼ (DS)m and T ∼ (DT)m,
for every h ∈ H

εDT
(h) ≤ εDS

(h)+d̂H(S, T)+β+

√
4

m
(d log

2em

d
+ log

4

δ
)+4

√
1

m
(d log

2m

d
+ log

4

δ
) (3)

where β ≥ inf
h∗∈H

(εDS
(h∗) + εDT

(h∗)), m - the size of datasets S and T , e - the base of

natural logarithm

These results provide an upper bound for hypothesis risk on target domain in terms of
three important components. Firstly, given a hypothesis h the risk on source domain
εDS

(h) represents the performance of the classification on labelled training data. It
implies that the fixed hypothesis h should perform well at least on samples from S. The
second component is the distance measure between two datasets S and T with respect to
fixed hypothesis space H. The impact of this part is two-sided. On the one hand, ideally
it is better if it is as small as possible with respect to the space of all possible hypothesis
Hall. On the other hand, even though that does not hold, one can make it less by
choosing not rich hypothesis space H. The third part, however, does not allow to make
H too poor, because it should be rich enough to contain a hypothesis h∗, that performs
well on both Source and Target domains. Actually, H should be also rich enough so that
we are able to find h which serves as a good approximation of the best hypothesis h∗ on
this class. The last two components should be also taken into account while choosing
proper H (i. e. number of neurons in the applications), because even though we have
enough statistics (m = 100000) they both rise quickly with V C-dimension in the region
where d . 500000.
One could propose an algorithm that minimizes the right part of the inequality in the
Statement 2. However, the computation of d̂H(S, T) is a difficult problem, because of the
”min” part in the Statement 1. For this reason following Ganin et al. [4] we approximate
it by adding domain discriminator part to a conventional Feed Forward neural network.

5

Figure 2: Neural network architecture with domain classifier (discriminator) and gradi-
ent reversal layer [4], for detailed description of DANN architecture refer to
the text.

2.2. Adversarial Domain Adaptation Neural Network

Thus, DANN architecture consists of three main parts Fig. 2. The first one is a feature
extractor Gf (·, θf) : X → RD which maps the input variables into latent representation
space (or features). Here and later θ parameters, which define a corresponding maps, are
called weights of the classifier. The second part Gy(·, θy) : RD → [0, 1] is a label predictor
that maps features to the class scores between 0 and 1 that serve as an estimate of class
labels (if the score of an event is close to 1, then it is signal, otherwise it is predicted
to be background). The third is domain classifier Gd(·, θd) : RD → [0, 1]. This part
predicts if an event comes from Source (0) or Target (1) i. e. the domain classifier is
designed to distinguish between the source and target instances and approximate the
”min” part of the H-divergence in the Statement (1). Both label predictor and domain
classifier have corresponding cross entropy loss functions Ly(θf , θy) and Ld(θf , θd) that
are computed as follows:

Ly(θf , θy) =
1

m

m∑
i=1

[
yi log

1

Gy(Gf (xi, θf), θy)
+ (1− yi) log

1

1−Gy(Gf (x, θf), θy)

]
(4)

Ld(θf , θy) =
1

2m

2m∑
i=1

[
di log

1

Gd(Gf (xi, θd), θd)
+ (1− di) log

1

1−Gd(Gf (x, θf), θd)

]
(5)

where di is a domain label of an event (xi, yi). di = 0, if xi ∈ S and di = 1 if xi ∈ T .
Note that Ly(θf , θy) is computed from Source instances only, while Ld(θf , θd) uses both
Source and Target data. A total loss function is introduced as

6

Figure 3: Construction of two datasets from different simulations

L(θf , θy, θd) = Ly(θf , θy) + λLd(θf , θd) (6)

However, instead of minimizing this total loss with respect to three groups of weights
θf , θy, θd the gradient reversal layer is utilized. The idea of the gradient reversal layer is
to reverse the sign of the derivative of discriminator loss Ld with respect to the weights
of the feature extractor. So the optimizer acts as the gradients are calculated as follows:

∂L(θf , θy, θd)

∂θy
=
∂Ly(θf , θy)

∂θy
(7)

∂L(θf , θy, θd)

∂θd
= λ

∂Ld(θf , θd)

∂θd
(8)

∂L(θf , θy, θd)

∂θf
=
∂Ly(θf , θd)

∂θf
− λ

∂Ld(θf , θd)

∂θf
(9)

Intuitively this means that the feature extractor tries to maximize Ld making instances
from two domains indistinguishable in the feature space. Therefore domain classifier
acts like a regularization term and promotes the generalization capability in the target
domain. The discriminator loss Ld is also multiplied by a positive discriminator impor-
tance parameter λ that sets the relative importance of label classification and domain
adaptation. Zhao et. al. in [5] argue that λ parameter can be data dependent so it is
important to find an appropriate value for our application. Technically we set λ to zero
to measure the performance of the corresponding baseline Feed Forward architecture
without domain classifier.

3. Data

Two datasets S1 and S2 Fig. 3 are constructed from simulated data as follows. Each
dataset consist of 100000 ttH(bb) signal events from MadGraph/Herwig6 simulation. In
addition, both of them has background events. But S1 is filled with background events
from MadGraph/Pythia6, while S2 from Powheg Pythia8. Each event is represented
by 41 variables that simulate ATLAS detector response on processes shown in Fig. 1.
A description of each variable is provided in the Table 2. Distributions of some input

7

Figure 4: Variable distributions for Centrality all (left) and dRbb MaxPt (right)

Figure 5: Variable distributions for nJets Pt40 (left) and dRlb3 (right)

Jets are selected if they have at least 25 GeV transverse momentum. We select events that
have at least 5 jets, of with at least 3 are tagged as b-jets. We require events to have exactly
one charged lepton, either electron or muon. We are therefore looking at events in which one
top decays to a lepton, thereby suppression background. bkg 1 is ttbar background, bkg 2 is
ttbb background.

8

variables are shown in Fig. 4. The difference in the background simulations may be seen
from distributions in Fig. 5, for example, nJets P t40 and HT jets (distributions are
centered to zero and normalized for better performance of the NN). 66% of each dataset
(green part in Fig. 3) are used for training and classification performance is evaluated
on statistically independent validation (red in Fig. 3).

4. Details of DANN Implementation and Optimization

4.1. Implementation

The DANN architecture described in Section 2.2 is implemented in Python 3.5 using
Pytorch framework based on the code of [5]. The feature extractor Gf (·, θf) is modeled
by 3 hidden layers and ReLu activation function in each layer. Both label the predictor
Gy(·, θy) and the domain classifier Gd(·, θd) represent shallow one layer perceptrons with
Cross entropy loss. Batch size of 5000 events is used in most of the experiments as it ap-
pears to be a good trade-off between epoch computation costs and stability of optimizer
steps. The feature extractor is tested in two different modes: the first is conventional -
all data instances from both domains (S1, S2) are passed to the discriminator, the second
one is data specific and uses the knowledge of S1 data labels for discrimination task -
only background events are passed to the discriminator part. Though for our experi-
ments the second approach does not show clear improvements, it has been found that
it affects the choice of λ. Hyper-parameters (number of neurons in each layer and λ)
have been selected from cross-validation and the optimal value is found to be [45, 30, 25],
λ : 1.2 (when only the background events are shown to the discriminator). Scan on the
λ parameter is performed at 20 values between 0 and 2. For values of λ < 1 the op-
timization converges, but does not show satisfactory results on S2. For values between
1.5 and 2 the optimization does not converge. Overall, the training behaviour of the
network is found to be sensitive to λ.

4.2. Optimization

Pytorch implementation of Adadelta optimizer [11] is used in most of the experiments.
Weights are updated in all three parts of the network simultaneously according to the
derivatives in Eq. (7, 8, 9). Note that partial derivatives with respect to θf weights are
deliberately calculated putting ”− ” for the second component to implement the idea of
gradient reversal layer. This, however, creates an additional challenge to the optimizer
in preserving the balance between classification Ly(θf , θy) and discrimination Ld(θf , θd)
losses. The Adadelta method updates the weights θt = (θtf , θ

t
y, θ

t
d) of NN at time t as

follows:

θt+1 = θt + ∆θt (10)

∆θt = −RMS[∆θ]t−1
RMS[g]t

· gt (11)

9

RMS[g]t =
√
E[g2]t + ε (12)

RMS[∆θ]t =
√
E[∆x2]t + ε (13)

E[∆θ2]t = ρE[∆θ2]t−1 + (1− ρ)∆θ2t (14)

E[g2]t = ρE[g2]t−1 + (1− ρ)g2t (15)

where ε (' 10−6) is a small constant to avoid division by zero and zero update at the
beginning, ρ ∈ (0, 1) is a decay constant which is set to 0.9.
Here θt+1, ∆θt, E[g2]t, E[∆θ2]t, RMS[g]t and RMS[∆θ]t are vectors of the same di-
mension as θt = (θtf , θ

t
y, θ

t
d), and vector operations in Eq. 11 should be considered as

component-wise division and multiplication. Accumulation variables E[g2]t, E[∆θ2]t
play a role of running averages for squared gradients and weight updates. An idea of the
Adadelta method is to accumulate sums of squared components of the gradient g over
a time-window, which is defined by ρ parameter. The weight updates ∆θt are modified
Eq. 11 (in comparison with standard gradient descent, where ∆θt = −const · gt) so that
the gradient gt is divided by accumulated sums for each component. It is also multiplied
by accumulated sums of previous updates to match the units of updates to the units
of θ. Intuitively, this approach helps to treat all NN weights more or less equally and
allows to update those weights that remain not updated for a long time. This strategy
turns out to be especially fruitful in application to DANN architecture. As the gradient
reversal layer is applied the NN the total loss function L is no longer directly optimized
during the training. Instead different components of the total gradients in Eq. 7, 8, 9 are
responsible either for improving classification power or generalization capability. Thus
ideally to provide a good trade-off between these two goals all weight groups should be
treated equally even though it is natural that in the beginning they might influence the
total loss differently. In the experiments related to optimization a default setting of the
NN is fixed (number of neurons: [45, 30, 25], λ : 1.2). We roughly compare the per-
formance of three optimization methods: Nesterov’s accelerated gradient [12], Adagrad
and Adadelta [11] in pytorch implementations to justify the above reasoning. Adagrad
and Adadelta are similar in that both methods tend to give preference to rarely up-
dated weights implementing the component-wise division of gt by accumulated squares
of gradient.

5. Results

Response, ROC and training curves are used to illustrate the classification performance
and training bias. Further we calculate significance, ROC AUC and accuracy to quantify
the results Table 1. Note that both datasets are split into training and validation parts
with 2 : 1 ratio as it is shown with red and green lines in Fig. 3 and all above-mentioned
curves and performance measures have been evaluated on ”red” validation data instances
that are statistically independent of ”green” training data.

10

Figure 6: # neurons: 45, 30, 25; λ: 0 (left), 1.2 (right); Only background events from
S1 are passed through discriminator

5.1. Response of NN

Response curve shows a distribution of NN output scores (on validation) which vary
from 0 to 1. Here 0 corresponds to the prediction of background event and 1 to signal
event. Fig. 6, 7 demonstrate NN response curves after 300 epochs for different NN
architectures. The novelty of this approach addresses the specific difficulty of the physics
analysis that relies on a uniform response of the classifier over its full spectrum. In these
plots orange lines correspond to the response on ttbar background events, while orange
shaded region to ttbb background events. The difference between two is the measure of
a training bias. Blue color shows the response on signal events. All histogram bins are
set to 40 to distinguish histogram shapes obtained after training. Fig. 6, 7 compare
the training bias of NN for baseline method without adversarial part (left) with DANN
(right) described in Sections 2.2, 4. DANN architecture clearly reduces the training bias
of NN in the signal region. The improvement can be also seen in case when both signal
and background events are passed to the discriminator Fig. 8.

5.2. Significance calculation and ROC curves

To quantify our results we calculate significance ZA taking into account class imbalance
(5% of signal) and integrated cross section (139 fb−1) according to Eq. 16, 17, 18, 19.
We fix an arbitrary cut of the classification score at 0.6 to roughly estimate the results.

ZA =
s√

b2 + σ2
b

(16)

s = 5 · 104 s
cut

sall
· 5% (17)

b2(1) = 5 · 104
bcut2(1)

ball2(1)

· 95% (18)

11

Figure 7: # neurons: 35, 30, 15; λ: 0 (left), 1.3 (right); Only background events from
S1 are passed through discriminator

Figure 8: # neurons: 45, 30, 25; λ: 0 (left), 2 (right); Signal and Background events
from S1 are passed through discriminator

12

Figure 9: ROC curves
The data instances from S1 are used for train-
ing and the evaluation is performed on the
statistically independent validation parts of
S1 and S2.

Figure 10: Significance curves
The significance is measured after each epoch
and the curves are smoothed with a 10 epoch
window. The performance of the three opti-
mization methods is compared.

Neurons λ Accuracy AUCROC Significance
[35, 30, 15] 0.00 0.62 0.67 0.21
[35, 30, 15] 1.30 0.65 0.73 4.41
[40, 25, 25] 0.00 0.62 0.67 0.22
[40, 25, 25] 1.24 0.64 0.73 3.95
[45, 30, 25] 0.00 0.62 0.67 0.21
[45, 30, 25] 2.00 0.64 0.72 11.99

Table 1: Classification performance for different DANN settings
Significance values are improved by a huge amount by using domain adaptation.

σb = b2 − b1 (19)

where sall - number of signal events from source 2, scut - number of signal events from
source 2 with classification score above 0.6, ball2(1) - number of background events, bcut2(1) -

number of background events with classification score above 0.6 (here indexes 1 and 2
relate to source 1 and 2 to correspondingly).
Receiver operating characteristic (ROC) curves Fig. 9 also indicate the trade-off achieved
by the application of domain classifier. The difference between red dotted and black
dash-dotted lines illustrate the difference in the performance of baseline method on
different domains. Notably the performance on the S2 is worse because NN is trained
on S1 only. However, this gap shrinks to almost identical orange solid and blue dashed
lines when domain classifier is applied.

13

Figure 11: Training curves for the NN setting of [45, 30, 25] neurons
The two plots illustrate the training process for the different strategies of passing data through
the discriminator. For the left plot only background events from S1 are shown to the discrimi-
nator. The right plot is the result of the training when all data instances from S1 are used for
the discriminating task.

5.3. Looking at training curves

The competing behaviour between the two parts of DANN is observed in Fig. 11 when
Adagrad or Adadelta optimizer is applied. Blue dashed and green dotted curves corre-
spond to the classification cross entropy loss on the first and the second sources during
the training. Orange dash-dotted and red solid lines show the discriminator cross en-
tropy loss and the significance correspondingly. The curves are smoothed with a 10 epoch
window to get rid of local fluctuations. Interestingly, all three losses synchronize at some
point and later oscillate together with nearly the same frequency and amplitude. At the
same time significance increases rapidly as a result of this competition and also oscillates
regularly reaching its local maximum values together with the three losses. The signifi-
cance curve usually has a distinct global maximum and this analysis may indicate that
the DANN architecture shows the best performance on one of the first local maximum
of the blue or orange curves when the competing behaviour has only started. Three
different optimization methods have been tested Fig. 10. Both Adadelta and Adagrad
optimizers remarkably improve the significance. Notably, the application of Nesterov’s
accelerated method (with different learning rate and momentum factor) monotonically
slightly decreases both classification and discrimination losses on S1, which however does
not result in the significance improvement.

6. Conclusion

Adversarial Domain Adaptation approach has been tested in application to ttH(bb)
search in simulated data. We have demonstrated that it can reduce the training bias
towards a given simulation. This concept can be applied to minimize an impact of any

14

systematic uncertainty. A natural extension to this work could be to use real collision
data as the target, thereby correcting the labelled MC to data. The code and more plots
can be found here.

7. Acknowledgements

The author expresses gratitude to Paul Glaysher and Judith Katzy for providing so chal-
lenging and interesting project. Numerous discussions, constant assistance and guidance
have been invaluable. Special thanks go to the ATLAS group for creating such friendly
and enjoyable atmosphere. Lastly, I would like to express my appreciation to the DESY
Summer Student Program organizers for arranging this highly educational and enjoyable
experience.

15

https://github.com/Ilyas979/Multi-Domain-Adversarial-Learning-DESY-

References

1. Collaboration A. Search for the Standard Model Higgs boson produced in associa-
tion with top quarks and decaying into a bb - pair in pp collisions at

√
s = 13 TeV

with the ATLAS detector // arXiv:1712.08895. — 2018.

2. Guest D., Cranmer K., Whiteson D. Deep Learning and Its Application to LHC
Physics // Annual Review of Nuclear and Particle Science. — 2018. — Vol. 68,
no. 1. — P. 161–181. — DOI: 10.1146/annurev-nucl-101917-021019. — eprint:
https://doi.org/10.1146/annurev-nucl-101917-021019.

3. A theory of learning from different domains / S. Ben-David [et al.] // Machine
Learning. — 2010. — May. — Vol. 79. — P. 151–175. — DOI: 10.1007/s10994-
009-5152-4.

4. Domain-Adversarial Training of Neural Networks / Y. Ganin [et al.] // arXiv:
1505.07818. — 2016.

5. Adversarial Multiple Source Domain Adaptation / H. Zhao [et al.] // Advances in
Neural Information Processing Systems 31 / ed. by S. Bengio [et al.]. — Curran
Associates, Inc., 2018. — P. 8559–8570.

6. Analysis of Representations for Domain Adaptation. / S. Ben-David [et al.] //.
Vol. 19. — 2006. — P. 137–144.

7. Ryzhikov A., Ustyuzhanin A. Domain adaptation with gradient reversal for MC/real
data calibration // Journal of Physics: Conference Series. — 2018. — Sept. — Vol.
1085. — P. 042018. — DOI: 10.1088/1742-6596/1085/4/042018.

8. Long M., Wang J., Jordan M. Deep Transfer Learning with Joint Adaptation
Networks. — 2016. — May.

9. Moment Matching for Multi-Source Domain Adaptation / X. Peng [et al.] //
ArXiv. — 2018. — Vol. abs/1812.01754.

10. Drossos K., Magron P., Virtanen T. Unsupervised Adversarial Domain Adaptation
Based On The Wasserstein Distance For Acoustic Scene Classification // ArXiv. —
2019. — Vol. arXiv:1904.10678.

11. Zeiler M. D. ADADELTA: An Adaptive Learning Rate Method // arXiv:
1212.5701. — 2012.

12. On the importance of initialization and momentum in deep learning / I. Sutskever
[et al.] // Proceedings of the 30th International Conference on Machine Learning.
Vol. 28 / ed. by S. Dasgupta, D. McAllester. — Atlanta, Georgia, USA : PMLR,
2013. — P. 1139–1147. — (Proceedings of Machine Learning Research ; 3).

A. Variable list for NN training

16

https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1007/s10994-009-5152-4
https://doi.org/10.1007/s10994-009-5152-4
https://doi.org/10.1088/1742-6596/1085/4/042018

Num Name Description

1 nJets number of jets
2 MET missing transverse energy
3 Mjj MaxPt mass of jet pair with largest transverse momentum
4 nJets Pt40 number of jets above 40 GeV pT
5 nbTag number of b-tagged jets

6 nHiggsbb30
number of Higgs boson candidates from b-jets, in 30 GeV
window

7 nHiggsjj30
number of Higgs boson candidates from all jets, in 30 GeV
window

8 pT jet5 transverse momentum of 5th leading jet
9 pT lep transverse momentum of charged lepton
10 HT jets sum of transverse momentum of jets

11-14 Hi all ith Fox-Wolfram moment, i=0,1,2,3
15 H2 jets 2nd Fox-Wolfram moment (jets only)
16 dEtajj MaxdEta largest difference in pseudo rapidity

17 Centrality all
Scalar sum of the pT divided by the sum of E for all jets and
the lepton

18 dRbb avg average opening angle between b-jets
19 Mbb MindR mass of closest b-jets
20 Mbj MaxPt mass of two jets (one of them a b-jet), with largest pT
21 dRbb MaxPt opening angle of two b-jets with largest PT

22 Aplanarity jets 1.5 times second eigenvalue of the momentum tensor
23 Mjj MindR mass of two closest jets

24 dRbj Wmass
opening angle of two jets (one of them a b-jet), closest two
W -mass

25 Mbj Wmass mass of two jets (one of them a b-jet), closest two W -mass
26 Mbj MindR mass of two closest jets (one of them a b-jet)
27 dRlj MindR smallest opening angle between lepton and a jet
28 dRlj MaxdR largest opening angle between lepton and a jet
29 pT jet3 transverse momentum of 3rd leading jet
30 dRbb MaxM opening angle of two b-jets with largest invariant mass
31 dRjj MindR smallest opening angle of any two jets
32 Aplanarity bjets 1.5 times second eigenvalue of the momentum tensor of b-jets
33 Mjjj MaxPt mass of three jets with largest pT
34 Mbb MaxM largest mass of two b-jets
35 Mjj MinM smallest mass of two jets
36 dRlbb MindR smallest opening angle between lepton and bb-system
37 dRluu MindR smallest opening angle between lepton and two untagged jets
38 dRlbb MaxdR largest opening angle between lepton and bb-system

39-41 dRlbi opening angle between lepton and ith b-jet, i=1,2,3

Table 2: Description of the input variables used for training neural network

17

	Introduction
	Theory on domain adaptation
	Domain Divergence and Generalization Bound
	Adversarial Domain Adaptation Neural Network

	Data
	Details of DANN Implementation and Optimization
	Implementation
	Optimization

	Results
	Response of NN
	Significance calculation and ROC curves
	Looking at training curves

	Conclusion
	Acknowledgements
	Variable list for NN training

