
Search for the optimal neural network input for CMS
T2tt SUSY data

Iuliia Sheleva, National Research Nuclear University MEPhI, Russia

September 5, 2018

Abstract

This work presents the study of the different inputs of the neural network which
are applied to the separation of stop signal and tt background. First a short intro-
duction to the SUSY and Machine learning in HEP is given. Then the variables
that are used as input of the neural network are described. The correlation co-
efficients between the input variables are presented. Finally, Asimov significance
for the different set of variables and the different number of layers of the neural
network is shown.
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1 Introduction

The Standard Model (SM) has been extremely successful in the description of nature
for the last decades. Despite its great success, the SM does not answer all questions,
e.g. the masses of the leptons and quarks and their hierarchies are not explained, the
question why there are three generations of them is not answered, not all forces of nature
are included in the SM. There are also experimental results, for which the SM does not
provide answers, e.g. neutrino oscillation experiments give clear evidence for non-zero
neutrino masses; observations in astrophysics lead to the postulation of dark matter and
dark energy. There are many experimental and theoretical arguments, which motivate
the expectation that the SM is not the final answer, but rather an approximation (or
effective theory) for the underlying, fundamental theory.
One very promising and arguably the best studied candidate for an extension of the
Standard Model is Supersymmetry (SUSY). SUSY proposes a relationship between two
basic classes of elementary particles: bosons (with integer-valued spin) and fermions
(with half-integer spin). Each particle from one group would have an associated particle
in the other, which is known as its ”supersymmetric” partner, the spin of which differs
by a half-integer. Standard particles and their ”supersymmetric” partner are shown on
Fig. 1. Since no SUSY partners of the fundamental SM particles have been observed
yet, SUSY, if it exists at all, must be broken.
The model studied in this paper predicts the two lightest SUSY particles as the part-
ner of top quark, t̃ (mt̃ =600GeV), and the lightest supersymmetric particle LSP
(mLSP =400GeV).

Figure 1: Table of the SM and SUSY particles
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2 Machine learning in HEP

General goal of using Machine learning in HEP is separation between signal and back-
ground. Binary classification are used to separate signal and background. Every event is
characterized by some event variables ~x and true class y. We can predict class ŷ (signal
or background) based on input variables ~x.
We use supervised learning and use a neural network as Machine learning algorithm.
A neural network (NN) consist of neurons which distributed into layers. Each neuron in
a certain layer is connected with all neurons in the previous layer. Neuron takes a input
x and takes the weighted sum z =

∑
i xiwi + b, where the bias b is an extra parameter.

Then it pass through activation function. The structure of a NN is shown in Fig. 2.
As activation function we use ReLU function which is shown in Fig. 3. Difference between
NN output ŷ and true class y measures through loss function. As a loss function we use
cross entropy:

C = − 1

n

∑
x

[y ln ŷ + (1− y) ln(1− ŷ)], (1)

where n is the size of the test set.
The training of a NN consist of minimizing a loss function.

Figure 2: The structure of a neural network
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Figure 3: ReLU function

3 Analysed data

3.1 Signal

We consider signal is due to stop pair production, which decays into top and LSP. The
top quark decays into a b quark and W boson. W boson can either decays into a lepton
+ neutrino or quark-antiquark pair. The corresponding diagram is shown on Fig. 4.

Figure 4: Signal decay (stop)

3.2 Background

As background, we consider the dominant process of top-antitop (tt) production. The
top quark decays into a b quark and W boson as in the signal case. The corresponding
diagram is shown on Fig. 5
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Figure 5: Background decay (tt)

3.3 Data

For our study we use data, which was generated via Monte Carlo simulations. We
consider a top squark mass of 600 GeV and a LSP mass of 400 GeV. PYTHIA8 [1] is
used for the event simulation and DELPHES3 [2] is used to model of the CMS detector.
We require at least one lepton with transverse momentum pT >30GeV. Each event must
contain at least four jets with pT >40GeV, at least one of the jets must be tagged as
originating from a bottom quark. More detailed description of used data is given in [3].

4 Choice of variables

The choice of the input variables is important for training of the neural network.
The variables can be divided in two subsets:

• Low level variables: consist of basic properties of the reconstructed physics objects
measured directly by the detector

• High level variables: constructed from the low level variables

List of the variables used in this analysis is presented in Table 1.
This variables are used as input of the neural network.

4.1 Variables definitions

4.1.1 Low level variables

As low level variables we have:

• the pseudorapidity ηl, transverse momentum pT,l and azimuthal angle φl of the
selected lepton
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Table 1: Table of the used variables

Low level High level

pT,l HT

ηl mT

φl mW
T2

pT,jet(1,2,3,4)

ηjet(1,2,3,4)

φjet(1,2,3,4)

pT,bjet1

njet

nbjet

6 ET

• the pseudorapidity ηjet(1,2,3,4), transverse momentum pT,jet(1,2,3,4) and azimuthal
angle φjet(1,2,3,4)of the 4 leading jets

• the transverse momentum pT,bjet1 of the leading b jet

• the number of jets njet and b-tagged jets nbjet

• the missing energy in the transverse plane 6 ET

4.1.2 High level variables

As high level variables we have:

• the scalar sum HT of the module of the transverse momentum of the selected jets

• the transverse mass mT =
√

2pT,l 6 ET (1− cos ∆φ(l, 6 ET )), where ∆φ(l, 6 ET ) is the
azimuthal angle between the lepton and the 6 ET vector

• the mW
T2 is the minimal mass of the mother particle compatible with the event in

the topology shown in Fig. 6 (we consider that one lepton has been lost). More
detail description of this variable is given in [4].

Plots for the missing transverse energy 6 ET , the transverse mass mT and the first jet
invariant mass for the background and for the signal can be found in Fig. 7, 8 and 9,
respectively.

7



Figure 6: tt dileptonic decay.
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Figure 7: Distributions of the missing transverse energy 6 ET for the background (on the
left) and for the signal (on the right)
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Figure 8: Distributions of the transverse mass mT for the background (on the left) and
for the signal (on the right)
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Figure 9: Distributions of the first jet invariant mass for the background (on the left)
and for the signal (on the right)
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5 Correlation matrixes

We can see a relation between variables through correlation matrix. Correlation coeffi-
cients are defined as Pearson correlation coefficients between two variables:

rxy =

∑m
i=1(xi − x)(yi − y)√∑m

i=1(xi − x)2
∑m

i=1(yi − y)2
(2)

5.1 Correlation matrixes of the input variables

The correlation matrixes of the input variables for the signal and for the background are
shown in Fig. 10.

Figure 10: The correlation matrixes of input variables for the signal (on the left) and for
the background (on the right).

As seen in these matrixes, there is strong correlation between HT and 6 ET ; HT and njet;
HT and pT,jet1; HT and mjet1; 6 ET and pT,jet1; 6 ET and mjet1.

5.2 Correlation matrix on output of classifier

The correlation matrix on output of classifier after training is shown in Fig. 11. ypred is
signal or background on output of classifier, its value can be from 0 to 1.
As seen in this matrix, some variables don’t correlate or very weakly correlate with ypred

(φl, φjet1 and mjet1). Next we can remove this variables.
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Figure 11: The correlation matrix on output of classifier after training.

5.3 Variables list

Full list of used variables in descending order of the correlation coefficient with ypred is
presented in Table 2.

6 Asimov significance

To study the performance of the implemented algorithm we use Asimov significance.
Asimov significance is an approximate form of discovery significance for a Poisson-
distributed background and signal (see [5]):

ZA = [2((s+ b) ln[
(s+ b)(b+ σ2

b )

b2 + (s+ b)σ2
b

]− b2

σ2
b

ln[1 +
σ2

bs

b(b+ σ2
b )

])]1/2, (3)

where s - signal events and b - background events with background uncertainty σb.
The error on the Asimov significance is calculated based on the Poisson uncertainty of
the background and signal counts.
We want to find out how the choice of input parameters of NN affects the significance.
We consider following cases:

• The different variables(low level, high level, low level and high level) and the
different number of layers
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Table 2: Full list of used variables

variable C(var, ypred) variable C(var, ypred)

mT 0.596051 ηjet4 0.015207
MET 0.389345 ηl 0.012802
B0jet -0.154295 ηjet1 0.009998
pT,jet1 0.141983 mjet1 0.008761
njet 0.137892 pT,jet2 -0.007572
HT 0.112880 φMET -0.007009
mW

T2 0.089710 φjet3 -0.004985
pT,l -0.056083 φjet2 0.003581
mjet2 0.044926 pT,jet3 -0.003479
mjet3 0.039461 φjet1 0.003127
mjet4 0.034022 ηjet2 0.002225
pT,jet4 0.026675 φjet1 0.000996
ηjet3 0.016211 φjet4 -0.000309
nbjet 0.015554

• The variables for the different number (1-4) of leading jets and the variables with
the different correlation coefficient with ypred

6.1 Asimov significance for the different number of layers

Asimov significance for low level, high level, low level and high level variables and for the
different number of layers is shown in Table 3, 4 and 5, respectively. Asimov significance
for same events and same random seeds is presented.

Table 3: Asimov significance for the different number of layers for low level variables.
The best significance is shown in green.

Nlayer 1 2 3 4 5
s 11.7 8.2 7.5 9.5 10.6
b 16.6 9.7 4.2 8.3 6.9
Asimov significance 1.94± 0.36 1.94± 0.42 2.7± 0.7 2.38± 0.52 2.87± 0.63

Asimov significance is the best for the large number of the NN layers if we use low level
variables. Opposite, Asimov significance is the best for the small number of the NN
layers if we use high level and low level+high level variables.
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Table 4: Asimov significance for the different number of layers for high level variables.
The best significance is shown in green.

Nlayer 1 2 3 4 5
s 71.5 64.5 58.8 64.5 83.2
b 29.1 25.0 27.7 26.3 36.1
Asimov significance 6.16± 0.77 6.22± 0.81 5.46± 0.71 6.03± 0.78 6.10± 0.72

Table 5: Asimov significance for the different number of layers for low level + high level
variables. The best significance is shown in green.

Nlayer 1 2 3 4 5
s 108.1 97.1 67.4 56.0 52.0
b 43.0 44.4 29.1 22.2 18.0
Asimov significance 6.68± 0.72 6.05± 0.66 5.89± 0.75 5.96± 0.81 6.29± 0.90

6.2 Asimov significance for the different set of variables

As shown in 5.2, some variables don’t correlate or weakly correlate with ypred. We try
to remove variables for which correlation coefficient with ypred (C(var, ypred)) less than
ε, where ε is 0.01, 0.02 or 0.03. This can increase Asimov significance.
Results for the two NN layers are shown in Table 6. Notice, that Njets in Table 6 means
no cut on number of jets, but variables of first jet (pT,jet1, ηjet1, φjet1), first and second
jets etc.

Table 6: Asimov significance for the different set of variables. The best significance is
shown in green.

Njets 1 2 3 4
All variables 6.30± 0.70 5.69± 0.58 6.94± 0.87 6.61± 0.85
Var. for which C(var, ypred) > 0.01 7.20± 1.00 7.00± 0.85 7.07± 1.01 6.31± 0.88
Var. for which C(var, ypred) > 0.02 6.75± 0.95 7.06± 0.83 7.59± 1.21
Var. for which C(var, ypred) > 0.03 7.23± 1.07 7.36± 1.15

As seen in Table 6, the best Asimov significance is 7.59± 1.21 (for 4 jets variables with
correlation coefficient C(var, ypred) > 0.02).
Also in Table 7 Asimov significance for the different set of variables and different number
of NN layers is presented.
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Table 7: Results for Asimov significance for different set of variables. The best signifi-
cance is shown in green.

Njets Nlayer 1 2 3

1
All variables 6.59± 0.85 6.30± 0.70 6.08± 0.66
Variables for which C(var, ypred) > 0.01 6.98± 1.14 7.20± 1.00 6.08± 0.62
Variables for which C(var, ypred) > 0.02 6.75± 0.95 6.77± 1.05

2
All variables 6.81± 1.03 5.69± 0.58 6.42± 0.88
Variables for which C(var, ypred) > 0.01 7.20± 1.02 7.00± 0.85 6.41± 1.04
Variables for which C(var, ypred) > 0.02 6.57± 1.13 7.23± 1.07 6.82± 1.12

3
All variables 6.71± 1.01 6.94± 0.87 6.44± 0.82
Variables for which C(var, ypred) > 0.01 6.48± 0.96 7.07± 1.01 6.62± 0.68
Variables for which C(var, ypred) > 0.02 7.11± 0.90 6.93± 1.10

4
All variables 6.81± 0.87 6.61± 0.85 6.28± 0.81
Variables for which C(var, ypred) > 0.01 7.06± 1.19 6.31± 0.88 5.83± 0.73
Variables for which C(var, ypred) > 0.02 6.57± 1.13 7.59± 1.21 7.48± 1.05

As seen in Table 7, the best Asimov significance is 7.59± 1.21 (for two NN layers, 4 jets
variables with correlation coefficient C(var, ypred) > 0.02).
Plots of Asimov estimate of significance and comparison between training and test sets
as result of classifier output for two NN layers, 4 jets variables with correlation coefficient
C(var, ypred) > 0.02 are shown in Fig. 12.
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Figure 12: Plots of Asimov estimate of significance (on the left) and comparison between
training and test sets (on the right) for the best Asimov significance
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7 Conclusion

Study of the input variables of the neural network were carried out on the CMS T2tt
SUSY model MC data. To study were selected some important input variables. Corre-
lations between the selected variables were studied. Asimov significance for the different
set of variables and different number of layers of the neural network were considered.
For set of high level and high level + low level variables the best result obtained with the
NN with small number of layers. For set of low level variables the best result obtained
with the NN with large number of layers. Also the optimal set of variables for the
best Asimov significance is found (for two layers of NN, 4 jets variables with correlation
coefficient C(var, ypred) > 0.02).
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