Study of BDT Training Configurations with
an Application to the Z/H — 77 — ee
Analysis

David Ciupke, University of Gottingen, Germany

6 September 2012

Abstract

We investigate the performance of boosted decision trees (BDT) with re-
spect to Monte Carlo samples of the Z/H — 77 — ee and Z/H — ee analysis
implemented via the Toolkit for Multivariate Analysis (TMVA). Following a
general introduction to the methods of BDTs and the possible optimizations
supported by TMVA we present the results of the study of the different con-
figuration options of TMVA with respect to the two different data sets. We
conclude that randomization of the training process can greatly enhance the
results, but one relies on chance.

Contents

(1 _Introductionl
2 eory!

2.1 Physics Background|.

2.2 Decision Trees
2.3 Boosting
[2.4 Overtraining and Pruning|

(2.5 Toolkit For Multivariate Analysis (TMVA)

[3 Analysis Results|
[3.1 Analysis for Z =77 —e€¢
[3.2 Analysis with cut on DiLeptonMass|

4__Conclusions
[References|

(A Appendix|

16

17

18

19

1 Introduction

So far the CMS H — 77 analysis implies no excess [I], but more sensitivity is
needed. This study is part of the analysis of the H — 77 — ee contribution. The
“standard candle” for the Higgs-analysis is the Z — 77 — ee channel, where one
can probe the possibilities for analysis of the Higgs-channel. The goal of this study
is to discriminate the Z — 77 — ee channel from the Z — ee background with
highest possible performance. The majority of signal events is in a mass window of
25 to 70 GeV of the invariant mass of the two leptons and the other background
contributions in this region are negligible. One question in particular is then, if a
precut to the mass window can give any performance boost in the discrimination.

One of the most important challenges to the preselection is to find suitable vari-
ables with high discrimination power. An example of how important the choice of
variables is can be seen in sec. |3.1] where a variable with very high discrimination
power is added to the classification problem.

Many classification problems are too complex to use linear cuts on event-variables as
classification and typically involve a very large background compared to the signal.
This makes a detailed study of the classification problem necessary. The current
study refers only to classifications via boosted decision trees (BDT), see sec. [2.2]
Decision trees are binary structured classifiers, that involve a sequence of deci-
sions, so called nodes, on a input event, where each decision is made on a single
event-variable. The sequence will terminate at a leaf, which classifies the event as
background or signal. This way the phase space of events is nonlinearly cut into
different regions, which are either signal or background. BDTs are known to have
high performance in nonlinear classification problems, but they often suffer from
overtraining (see sec. and take a relatively long time to be trained. Typically
BDTs require only little tuning of the configuration to achieve good results 2], a
statement, that we confirm in our analysis, see sec.

For the training of BDTs we use the Toolkit for Multivariate Analysis (TMVA)
version 4.1.0, which is implemented in ROOT. Throughout the analysis the version
5.28 of ROOT was used[]

2 Theory

2.1 Physics Background

The Higgs boson emerges from electroweak symmetry breaking in the Standard
Model (as well as other models). Since the discovery of a neutral boson at a mass
of 125 GeV last July in other final states the study of the H — 77 channel has
become very interesting, as it offers the possibility of detecting crucial properties of
the boson and may indicate new physics.

!The more recent version of ROOT was not able to properly implement the TMVA-Graphical
User Interface (GUI).

4 2 Theory

This study is part of the H — 77-channel analysis in the di-electron final state. This
channel is particularly challenging because of the small branching ratio of the 7 — e
and the dominant Drell-Yan background Z — ee. Before the actual H — 77 — ee-
analysis the Z — 77 — ee-channel will be considered since the topology of these
events is very similar to the higgs signal. Discrimination between signal and DY-
background will be done via the MVA method of Boosted Decision Trees. The
descriminating variables used for the BDT training describe the kinematics of the
final state electrons:

e DiLepEta: The pseudorapidity of the di-electron system

e PosMETDPhi: The azimuthal angle between the direction of the positively
charged electron three-momentum and the missing transverse energy

e DiElePtRatio: Ratio of missing transverse moment of both electrons
e EleDCASig: Inter electron distance of closest approach significance

e ValidDiTau: Set to one if the collinear approximation for the reconstruction of
tau lepton pair kinematics yields a physical solution for the neutrino energies,
otherwise the variable takes the value 0

e CosPosDiLepton: The decay angle of the positively charged electron in the
rest frame of both electrons

e CosPosDiLeptonPlane: The angle between the three-momentum of the e™ and
the plane spanned by the three-momentum vector of the di-electron system and
the protonbeam axis.

2.2 Decision Trees

Decision trees are used for classification problems and have a binary structure. For
the problem at hand, they sequentially cut on discrimination variables. In this way
an event is processed through the tree yielding a tree response of signal or back-
ground, see fig. [77] Via this method the space of discrimination variables is split
in many rectangular regions, which are labeled by signal or background. The trees
are grown respectively trained in a successive manner, i.e. starting with the root
node. The cut value and discrimination variable at each node is chosen, such that it
provides the best separation between signal and background. The training stops at
a node as soon as the a critical lower bound of events (nEventsMin, see sec. is
reached at that node. The leafs, i.e. the final nodes, determine whether the event is
signal or background and they are labeled according to their purity p = S/(S + B).
When p > 0.5 the event is considered signal if p < 0.5 it is considered background.
The quality of separation is defined by the so called impurity function, some exam-
ples are the following:

e Gini Indez: p- (1 —p)

e Cross entropy: —p -In(p) — (1 —p) - In(1 — p)

2.3 Boosting)

S/(S+B)=0.489

DiElePtRatio>0.868

S/(S+B)=0.492 SI(S+B)=0.355

EleDCASig<0.541 CosPosDiLepton>0.184

~

S/(S+B)=0.412
S/(S+B)=0.562 S/(S+B)=0.491 S/(S+B)=0.236
PosMETDPhi> 1.66

S/(S+B)=0.083

Figure 1: Example of a decision tree showing intermediate nodes (green) as well as signal
(blue) and background (red) leafes. The variables used stem from the Z/H data analysis.
The picture was produced by TMVA.

e Misclassification error: 1 — max(p, 1 — p)
e Statistical significance: S/\/S + B.

The training procedure then chooses the variable and cut value, that maximizes
the increase in the impurity function between an initial node and the sum of the
daughter nodes weighted with their corresponding fraction of events. TMVA does
this with a granularity set by the parameter NCuts. Setting this parameter to the
value -1 TMVA will determine the optimal value of it, i.e. the one yielding highest
performance.

2.3 Boosting

Decision trees are sensitive to statistical fluctuations of the training data sample. A
way to make decision trees more robust and also increase the performance is to use
boosting, a method that is generally applicable to any classifier [2]. The idea always
is to combine a collection of weak classifiers into one that is strong. TMVA provides
three different boosting types: Adaptive boosting, gradient boosting and bagging.
Adaptive Boosting (AdaBoost) creates a strong learner by training weak learners
sequentially in a way that they “learn” from the errors of previously grown trees.
First an initial tree is grown. Afterwards the fraction of misclassified events f;
is determined and all misclassified events will be reweighed with a weight ay =
(1= f1)/f1 > 1. A second tree will be trained with the reweighed data, the sample
will again be reweighed and another tree be grown. This process will go on until a
certain NTrees are grown, this is then referred to as a forest.

Depending on the particular TMVA configuration an event x, which is put into a
single tree, will either give a response of signal or background, corresponding to
values h(z) = +£1, or will respond a purity value. The corresponding option is called

6 2 Theory

UseYesNoLeaf. Adaptive boosting then yields a response defined by

NTrees

! Z In (o) hi(z) (2.1)

- NTrees

yAda(x)

When using bagging, a forest of trees is grown in such a way, that each tree is grown
with a resampled training sample. Thereby the strong learner is a statistical com-
bination of the weak learners.

Gradient boosting on the other hand is not demonstrative, but implemented in
a rather technical way [2]. It is generally more robust than adaptive boosting
and in TMVA also implemented with the option of extra bagging via the option
UseBaggedGrad. More options related to it are listed in tab. [I]

Another option that is available for each boosting type is UseRandomisedTrees.
If the option is set to True, each tree in the forest will be grown in a way that
at each node splitting only a random subset of all training variables will be used,
the total amount of variables at each node can be set via the option UseNvars.
Further randomised trees allows for a bagging-type resampling of the training data
set for each tree grown. The number training events is determined via the option
UseNTrainEvent. A randomization only occurs, if less events are used than there
are in the whole training sample.

2.4 Overtraining and Pruning

When classifiers are too much adapted to a specific training sample, similar samples
can have a completely different response from the trained classifier. In this case one
talks of overtraining. Overtraining is problematic as the real data will be classified
different from the training sample and the BDT output distribution can not be used
to determine the optimal cut value. BDTs are in general sensitive to overtraining.
Different techniques called "pruning” have been developed to deal with this problem
in the case of BDTs. Pruning usually refers to the process of cutting down the
tree from the leaf-nodes further into the tree removing statistically insignificant
nodes. In TMVA pruning is only available for AdaBoost and provides two methods
CostComplexity and ExpectedError.

The Cost Complexity pruning cuts away subtrees, whose gain in classification is not
“justified by the number of extra nodes required for it. It is defined via the so called
cost complexity for a node

R(node) — R(subtree below node)
#(subtree) — 1 ’

p= (2.2)
where R = 1—max(p, 1—p) is the misclassification error. Nodes with p <PruneStrength
are then iteratively cut out of the tree.
Expected Error pruning on the other hand recursively cuts off leaf nodes from the
tree, whose combined statistical error

p(1—p)

err = N where N is the number of training events in the node.

2.5 Toolkit For Multivariate Analysis (TMVA) 7

of the leaf nodes is higher than the error of the parent node. The statistical error
might be manipulated by multiplying it with PruneStrength.

In the case of CostComplexity TMVA provides the option PruneStrength= —1,
which automatically determines the value for PruneStrength, that yields the high-
est performance, by using a subsample of the training sample. This option is not
available for ExpectedError.It should also be remarked, that pruning in TMVA is
only available for AdaBoost.

2.5 Toolkit For Multivariate Analysis (TMVA)

As mentioned in the introduction TMVA provides a framework for multivariate anal-
ysis implemented in root. In particular it has incorporated boosted decision trees
with some of the options already explained in the previous sections. Fig. [77] shows
the different elements of the BDTs in TMVA and their corresponding configura-
tion variables such as pruning or boosting. TMVA can be initialized via a simple
root script. For the preparation of the testing and training samples the MC data
samples for every event class considered (Z — 77 — ee for signal and Z — ee for
background) are reweighed according to their cross section and number of generated
events. For the Z — 77 — ee analysis two different data sets were included, one
having a transverse momentum pr of 50 GeV, the other a transverse momentum in
the range from 10 to 50 GeV. TMVA also has the option of applying precuts to the
sample. The preparation is done via the class factory, i.e.

factory — PrepareTrainingAndTestTree(cuts, “options”);

This includes the precuts and splits the entire sample into test and train sam-
ple via the option SplitMode. The splitting can be chosen as randomised via the
value Random. The randomised division is implemented via the random generator
TRandom3, that is the Mersenne Twister. Using this option the random seed can
be set to a certain value via SplitSeed. Using the value SplitSeed= 0 deter-
mines a seed by random, such that the randomization yields a different result every
time it is used. One may also split the sample just into two blocks via the value
Block or use alternating via Alternate. Further the ratio of test and train samples
can be fixed via the options nTrain Signal, nTest Signal, nTrain Background
and nTest Background, the standard configuration here is a split in half testing
and training samples. Further one can normalize the event weights via the option
NormMode. If the value NumEvents is chosen, the sample is normalized to the number
of events.

After preparing the sample one can book the MVA method via the function
factory — BookMethod(TMVA :: Types :: kBDT, "BDT”, "options”); ,

where the first argument specifies the MVA method, in this case BDT, the second
assigns a name to the method and the last is used for further options. Some of the
options have already been mentioned in the previous sections, a full table of booking

] 2 Theory
- CostComplexity
- NoPruning
- Expectedl Error
- MaxDepth
- NNodesMax - PruneStrength
- nEventsMin - PruneBeforeBoost
Prune Method - PruningValFraction
Tree - UseWeightedTrees P .
] . - UseYesNoLeaf r]_n
Variables - NodePurityLimit LR g
Output
- NTrees B TS
- NCuts
Boosting e
- AdaBoosgtBeta B 144
] uilding
aBoost
Bagging :
Separation
Type
Grad
. \ - Ginilndex
- Shrinkage - GinilndexWithLaplace
/ - UseB ggeQGrad . - CrossEntropy
- GradBaggingFraction - MisClassificationError
- SDivSqrtSPlusB

UseRandomisedTree

- Use
- Use

S
ment

Figure 2: Overview over the different building blocks of the TMVA-BDT-configurations
and the corresponding configuration variables of TMVA.

options for BDT can be found in tab.

TMVA comes with a graphical user inter

face (TMVAGui.C) with a menu of dif-

ferent plots implemented. On one hand it shows the distributions of the input

variables, their scatter plots and correlatio

ns, e.g. see fig. [[1] and fig. [0 in the ap-

pendix. On the other hand it shows the classifier output distributions of signal and
background, i.e. the probability density functions of the classifier, see fig. [3] In
order to check overtraining the BDT output distribution plot is available showing

Background rejection versus Signal efficiency Cut efficiencies and optimal cut value

(LN) AN/ dx
< o
2

=

/
M

<
)
B
2
2]
k'
&
=
2
)
2
S
-3
@

o ¢
@
°
>

°
3
Efficiency (Purity)
o
&
//&/ o

o
@«

°
S

04f = L \

E E g 3
03f] [} events the maximum SI{S+8 is \

F E when cutting at N

0.2 0

°
0

o 01 02 03 04 05 06 07 08 09 1
BDT response Signal efficiency Cut value applied on BDT output

(a) BDT output distribution (b) ROC-Curve, i.e. signal effi- (¢) Classifier cut efficien-

for test and training, i.e. over- ciency versus background rejec- cies, showing the significance

training check. tion plot. S/VS + B, signal and back-
ground efficiencies and signal
purity as a function of the BDT
cut value.

Figure 3: Different plots provided by the TMVA graphical user interface.

the training and testing samples superimposed. Further plots include the so called
ROC-curve showing the signal efficiency versus background rejection and the clas-
sifier cut efficiencies, see fig. [3l The latter consists of a plot displaying significance
S/VS + B as a function of the BDT cut value for a specific number of signal and
background events. This value is the parameter indicating the performance of the
BDT-training most accurately. However one also has to take statistics into account,
which means that one should keep in mind the signal efficiency that corresponds to
the optimal cut value. If this value is very low, a lot of signal is cut away. If one
has low statistics in the real data, one can not be sure anymore of the quality of the
cut, since the output distribution is different from the one of the training sample.
TMVA also prints out the integral over the ROC-curve for every booked MVA
method. This value can be used as a first indicator of the quality of a training.
The TMVA-Gui also includes plots showing each decision tree of the forest as well as
tree control plots, see fig. [77] and fig. [I0] The control plots show boost weights and
the fraction of misclassified events per tree as well as the number of nodes before
and after pruning.

3 Analysis Results

3.1 Analysis for Z — 77 — ce

Our studies of BDT configurations for TMVA involve mostly probing the impact
and behaviour of distinct configuration variables. A systematic study covering all
possible configurations on a grid of most their values would need much more compu-
tational power and time. Especially computing power was limited in our studies as
a typical training would take between 30 and 100 minutes. However we can deduce
approximate statements about the importance of the configuration variables and
their interplay.

The input variables used for the training of the sample are added in the appendix,
fig. [[I} Their correlation plots are shown in fig. [0} We begin our analysis with the

10

3 Analysis Results

Option Default Values Description
NTrees 200 - Number of trees in the forest
BoostType AdaBoost AdaBoost , Boosting type for the trees in the forest
Bagging,
Grad
UseBaggedGrad False - Use only a random subsample
of all events for growing
the trees in each iteration.
GradBaggingFraction 0.6 - Defines the fraction of events
to be used in each iteration
when UseBaggedGrad=True.
Shrinkage 1 - Learning rate for GradBoost algorithm
AdaBoostBeta 1 - Parameter for AdaBoost algorithm
UseRandomisedTrees False - Choose at each node splitting
a random set of variables
UseNvars 4 - Number of variables used if
randomised tree option is chosen
UseNTrainEvent N - Number of Training events used
in each tree building if
randomised tree option is chosen
UseWeightedTrees True - Use weighted trees or simple average
in classification from the forest
UseYesNoLeaf True - Use Sig or Bkg categories, or the purity
as classification of the leaf node
NodePurityLimit 0.5 - In boosting/pruning, nodes with
purity > NodePurityLimit are
signal; background otherwise.
SeparationType GiniIndex CrossEntropy, Separation criterion for node splitting
GiniIndex,
GiniIndexWithLaplace,
MisClassificationError,
SDivSqrtSPlusB,
nEventsMin 20 - Minimum number of events required in
a leaf node (default uses given formula)
nCuts 20 - Number of steps during
node cut optimisation
PruneStrength -1 - Pruning strength
PruneMethod CostComplexity NoPruning, Method used for pruning (removal)
ExpectedError, of statistically insignificant branches
CostComplexity
PruneBeforeBoost False - Flag to prune the tree before
applying boosting algorithm
PruningValFraction 0.5 - Fraction of events to use for
optimizing automatic pruning.
NNodesMax 100000 - Max number of nodes in tree
MaxDepth 100000 - Maximal depth of the

decision tree allowed

Table 1: BDT configuration variables together with their standard values, predefined
options and further explanations.

3.1 Analysis for Z — 77 — ee 11

options for the preparation of the test and training sample. The option NormMode=
NumEvents was used throughout the analysis as well as SplitMode=Random. The
change of the split seed however yielded quite different results depending on the
booking options. We will consider changes in performance, that are indistinguish-
able from the regular deviations, i.e. with respect to the “standard configuration”

factory — BookMethod(TMVA :: Types :: kBDT, "BDT”, "NTrees = 2000 : nEventsMin
= 150 : MaxDepth = 3 : BoostType = AdaBoost : AdaBoostBeta = 0.5 : nCuts = 20

: PruneMethod = NoPruning”);)

due to a change of split seed, as insignificant. Tab [2] shows the ROC-curve integral
for SplitSeed=0,50,100 and NTrees=100,500,2000, one can see deviations of up to
0.01. For the significance the deviation can be up to 3 %. The discrepancy between

SplitSeed | Int ROC(100) | Int ROC(500) | Int ROC(2000)
0 0.774 0.771 0.777
50 0.772 0.773 0.775
100 0.779 0.780 0.783

Table 2: Difference in the ROC-curve integral for different values of the split seed and
number of trees, indicated through the brackets. A stabilization with increase in trees is
not seen.

the distributions of the test and training events is given in fig. [12] for the example
of the variables CosPosDiLepton and PosMETDPhi for each signal and background
events. The discrepancy is much smaller for larger statistics, i.e. background events.
This results in the fact, that the BDT performance of the signal is correlated to the
random seed, that has been used for the generator. Using more trees smoothens
out this effect, but it can be enhanced for certain configurations. In fact using the
option UseRandomisedTrees=True strongly enhances the discrepancy between in-
dividually different trees due to statistical fluctuations, such that the probability
density function of the BDT response has either no overtraining and high perfor-
mance or significant overtraining and considerably less high performance, we will
get back to this point later on.

The splitting of the test and training sample was done with the standard configu-
ration, i.e. a splitting into 50 % test and 50 % training sample. A test run over
a granularity of i - 10% of test data for ¢ = 1,---,9 did not yield any significant
change in performance.

Let us now proceed to the study of the booking options. The boosting type BoostType=Bagging
could not be compiled in the used root and TMVA versions and could therefore not
further be investigated. AdaBoost and Grad were usually studied separately.

The first variable investigated is NTrees w.r.t AdaBoost. An increase of this variable
is expected to yield a stabilization of the BDT output distribution with respect to

12 3 Analysis Results

error fraction vs tree number
R R R R RS AR

o
13

error fraction

o
>

03f

0.2f

04f

o b b b e b b bl
0
0 10 20 30 40 50 60 70

#tree

Figure 4: Error fraction as a function of the tree index: zoom of plot in fig. .

statistical fluctuations and make the distribution more smooth. This behaviour was
confirmed. Also the center of the distributions would be shifted to greater values
of the BDT response for a larger number of trees. This is due to the fact, that the
boost weights usually have an attractor of 1 for increasing tree number as can be
seen for instance in fig. [I0] If the boost weights are all approximately the same,
the distributions are shifted towards the value of 0 with increasing number of trees,
since the trees classify signal/background only about 50 % of the times correctly.
This process is slow due to the fact that in the forest response the weights are in-
corporated via a logarithm and therefore nearly vanish. Further it was observed
that the overtraining is increasing with larger forests. This does strongly depend on
the other configuration parameters like pruning or MaxDepth. Similar results were
produced for Grad with the difference that the BDT response PDF already stabilizes
for small forests as Grad is more robust than adaptive boosting.

It is somewhat surprising that adaptive boosting performs so bad, i.e. it does not
enhance the trees but rather makes them worse as can be seen from the control
plot in fig. [, where the first trees have a low misclassification error, but the error
becomes larger with increasing tree index. One should keep in mind that a tree,
that misclassifies 50 % of the events, is as good as a random guess.

The options UseWeightedTrees and UseYesNoLeaf were tested for AdaBoost and
the results of the BDT response distributions can be seen in fig. [5] We again see that
adaptive boosting misclassifies nearly 50 % of all events. Using unweighted classifiers
yielded a worse performance and more overtraining. The option UseYesNoLeaf=False
made the PDF more peaky and did not increase performance.

For all used data sets, that is with and without extra cut on DiLeptonMass, the
different options for SeparationType showed approximately the same hierarchy in
performance. The options GiniIndex and CrossEntropy yielded the same per-
formance, while GiniIndexWithLaplace performed slightly and SDivSqrtSPlusB
as well as MisClassificationError significantly worse. The granularity for node
splitting, namely nCuts, is insignificant, the performance saturates already at values
around 20. Also the TMVA provided option nCuts=-1 does not yield any significant
benefit, but drastically increases computation time.

3.1 Analysis for Z — 77 — ee 13

TMVA overtraining check for classifier: BDT600

8 i éighal kls§t sa‘mp‘le) T
/] Background (test sample)

TMVA overtraining check for classifier: BDT

i‘ Siénaf (&egt §amblei T
25 [L7/] Background (test sample)
Fkolmogorov-Smirnov test: signal (background) probability = 0.098 (0.665)

« signal (training Sample) "s Sigrfal (training sample) "

« Background (training sample)

» Background (training sample)_]

test: signal p ility = 0.744 (0.858)

(L/N) dN/ dx
~
(1/N) dN/ dx

U/O-flow (S,B): (0.0, 0.2)% / (0.0, 0.0)%

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%
= = N
o o 15} [l o
L B
oi

[l AR AR RN AR R RAR R RN RRRNN |

° ; 0.) 0 0.6 -0.4 0.2 0.‘2 0.4
BDT600 response BDT response
(a) Weighted Classifier (b) Unweighted Classifier

TMVA overtraining check for classifier: BDT TMVA overtraining check for classifier: BDT

3 = FIT 'Signal (test sample) ' | ||« Signal (frdining sample) ' | % 220 FEiT signal (tedtsampie) T [[+ Sighal (faiing samble) 3
Z /7] Background (test sample) | | « Background (training sample) J Z 200 7] Background (test sample) | | « Background (training sample)—
o =]
> 30 [test: signal probability = 0.713 (0.806)]| S 180 [-Kolmogorov-Smimov test: signal (background) probability = 0.0242 (1) |
S 1 S0 E
25— = E E
£ 1s 140 e
£ 18 = B
20 — —-° 120 — =
£ de E R
F ES 100 - 3
15 =ES F S
E 33 80 — =3
C Je C]
10 - e 60 -
E 15 40 |
5 1z E
£ q2 20 =
0 okttt drdataioil 5) I | |
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.35 0.4 0.45 0.5 0.55
BDT response BDT response

(c) Use S/(S+ B) as tree response instead (d) Use S/(S+ B) as tree response instead
of signal /background (weighted). of signal /background (unweighted).

Figure 5: Difference in options UseWeightedTrees and UseYesNoLeaf with respect to a
training configuration using 600 Trees, AdaBoost, MaxDepth= 3 and no pruning. Fig.
implies, that signal and background are misclassified in almost 50 % of all trees.

14 3 Analysis Results

A study of the boosting parameters AdaBoostBeta and Shrinkage revealed that
values of AdaBoostBeta around 0.5 perform best, but changing the value is insignif-
icant. The deviation of performance for Shrinkage is larger, the best performance
can be achieved with values below 0.1. Usually the increase in performance satu-
rates at a level of 0.05. Note also that decreasing this values will further increase
computation time.

Let us now proceed to the building block of controlling overtraining. In general
one has two different possibilities of dealing with the latter by pruning or chang-
ing parameters such as MaxDepth or nEventsMin. Several trainings showed, that
pruning does not work together with values of MaxDepth lower or equal than 5, an
example of this can be seen in fig. [I0] For higher values it does work, but determin-
ing the optimal value of PruneStrength is required. For lower values overtraining
is still present, while for too high values the BDT response PDFs become discrete.
Having determined the optimal pruning strength the BDT output distributions are
still wiggly and overtraining is considerably high, usually below the “critical” value
of the Kolmogorov-Smirnov test of 0.01. Because trees have to have greater depth
for the pruning to work, the computation time is higher.

Controlling the overtraining via fine-tuning of the parameters MaxDepth, nEventsMin
and NNodesMax proved to be more reasonable. A general choice of these values for
any data sample can not be given, but in fact requires a detailed study. It is
worth mentioning that these parameters have a different granularity in dealing with
the overtraining. MaxDepth is the coarsest parameter, followed by NNodesMax and
nEventsMin, such that one would start by finding a reasonable range for this value
first. For the given data set both the choices MaxDepth=3 and 4 greatly reduce
overtraining without compromising performance. The simulations were in favor of
leaving NNodesMax untouched while tuning nEventsMin. This is due to the fact
that NNodesMax is not much different from MaxDepth and the data set had enough
statistics to be fairly resilient against overtraining. Values of nEventsMin between
1000 and 2000 performed best in dealing with remaining overtraining.

Further there was an inconsistency with the usage of ExpectedError-pruning ob-
served. Fig.[14]shows two configurations that use a different value of PruneStrength.
As already mentioned pruning did not work together with too small values of
MaxDepth like in this case, so one would expect both plots to coincide. In fact the
result for PruneStrength=50 could not be reproduced and every training yielded

exactly the output of fig. This strongly suggests that fig. is the result
of an inconsistency in TMVA or in the graphical user interface.

The option UseRandomisedTrees=True is of particular interest since it exhibits the
ability to enhance the performance of the training significantly. Fig. [13] and tab.
show the output distributions, ROC-curves and significances of trainings using ran-
domised trees together with Grad for SplitSeed=0 and 100. One can see that the
training performs very well for SplitSeed=0 and NVars=2,--- .6, but performs only
average for NVars=7 and SplitSeed=100. At the same time the great performance

3.2 Analysis with cut on DiLeptonMass 15

goes along with almost no overtraining, while the average performance simulations
are overtrained. This behaviour was already mentioned. Similar behaviour for
AdaBoost was observed.

One may think, that there is no advantage in using UseRandomisedTrees=True,
since it decreases the separation power of the training. In fact the training pro-
cedure only takes into account which variable yields the greatest separation power
at the corresponding node, but ignores the further splitting of the subtree. Ran-
domised trees can give in advantage in the sense, that it may cause scenarios, where
variables are chosen, that do not necessarily give the best separation at a particular
node, but yield better subtrees.

The option UseBaggedGrad=True was also able to enhance the performance similar
to randomised trees, but was not studied to a great extent, since it does not of-
fer as many possibilities as UseRandomisedTrees=True and is not implemented for
AdaBoost.

Final Training Configuration

The result of the study is a configuration had the following booking options (with
SplitSeed=0)

NTrees = 2000 : nEventsMin = 2000 : MaxDepth = 4 : BoostType = AdaBoost :
AdaBoostBeta = 0.6 : UseRandomisedTrees = True : UseNVars = 6 : nCuts
= 2000 : PruneMethod = CostComplexity : PruneStrength = —1 ,

the corresponding BDT PDFs can be found in fig. [(] This configuration includes
pruning even though it is just making the training set smaller, since the option
PruneStrength=-1 was chosen. The quality of the training was produced by chance,
similar to the example for the usage of randomised trees earlier. The optimal cut
value is at -0.13 and yields a boost in significance of 10 % with respect to the standard
configuration, reaching a value of S/v/S + B = 16.5 with 1360 signal events at an
integrated luminosity of [Ldt = 2.82 fb~t. In the proximity of the optimal cut
value the data and MC seem to agree well with each other. The corresponding
DileptonMass distributions including all channels before and after applying the
corresponding cut are shown in fig. [L5|showing the mass window, where the majority
of signal events lie. Further also the BDT control plots are found in fig. [I0}

Analysis including DiLeptonMass as a training variable

Training the sample including DiLeptonMass will not be implemented in the anal-
ysis, but shows how much the discrimination quality determines the performance
of the BDTs. The fact that BDTs ignore weakly discriminating variables further
enhances this effect with respect to this example. From fig. [7|one can clearly see the
large boost in discrimination power. In terms of significance this is roughly a boost
from a range of 7 to values greater than 22.

16 3 Analysis Results

| |
i Sidndl (t‘es{ sémblé) L éighaf (tFaiﬁinb §arﬁp|é) T
14 Background (test sample) . Background (training sample)

["Kolmogorov-Smirnov test: signal (background) probability = 0.977 (0.721)
12

(1/N) dN/ dx

10

o

0.1 0
BDT response

o
2
o
N
=)
w
=)
[N

(a) BDT output distribution for the final training config-
uration.

[Lm =282 Vs =7Tev;
10°
10°
10*
10°
10

10

2o
38
H

ee_7-1050

N
Eia
8

=l
5
N
&
g

autau_z-10-50

28
KR

Q
58

FENEd

1
10
102
10°

B

E .._.+_. i g Son o g CR —o.r.-ﬁ\.-o.:,."+

\lH\‘H\:\H‘

(b) BDT output distribution for the final training configuration including
all background channels.

Figure 6: BDT output distributions for the result of the Z — 77 — ee study.

3.2 Analysis with cut on DiLeptonMass

Selecting a precut of 25<DiLeptonMass<70 greatly reduces the amount of back-
ground from 2334154 to 113760 events. In this sense the training is different as the
statistics are worse. The training exposed to be in favor of the value MaxDepth=3,
but the overtraining was in general larger than in the previous study and harder to
get under control. This made the usage of the parameter NNodesMax feasible. For
this the training configuration

NTrees = 2000 : nEventsMin = 1000 : NNodesMax = 3 : BoostType = Grad :
Shrinkage = 0.04 : UseBaggedGrad = True : UseNVars = 6 : nCuts = 2000 :
MaxDepth =3 |

proved to give high performance. Using 2300 signal and 40000 background events
yielded a significance of 12.95 at a cut of -0.818 corresponding to 1306 signal events

17

% [I53) Sl (testsampie) ' ' | 1| - Signki (waininb sample) ' ' 1 = " P Signd (festsample) ' '[! | - 'Signal(raining sample) | | 1
% 10 m Background (test sample) . Background (training sample) _| % E@ Background (test sample) - Background (training sample) E
E :Kolmogorov—Smirnov test: signal (background) probability = 1%115—06 (0.988) : »2 14 rKoImogorov—Smirnov test: signal (background) probability = 0.424 (0.386)
a r B 3 r
=~ 8 &] T 12
] 10
6] C
] 8-
4 — 6 }
] 4
2] r
] 2
o - i
-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
BDT response BDT response
(a) Training including DiLeptonMass. (b) Training without DiLeptonMass.

Figure 7: BDT output distribution for a training including DiLeptonMass and one with-
out. The training was done with AdaBoost.

=1000_GBF=1.0_NNodesMax=3

50 Sional GeStsampi&)™ ' | |« Sighal (raiing sample) ' ']
10 (£ Background (test sample) | | « Background (training sample)—

Kolmogorov-Smirnov test: signal (background) probability = 0.804 (0.658)
)

(1/N) dN/ dx

v b b by Iy

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

" oy, Boioaen. ! s
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

BDT_nEventsMin=1000_GBF=1.0_NNodesMax=3 response

Figure 8: BDT output distribution for the training configuration mentioned in sec.
with respect to the precutted data sample.

after applying the cut. This implies a worse performance than the training without
cut. On the other hand the choices taken do not involve UseRandomisedTrees=True
and therefore a better training seems likely, but will take longer to be found due
to the usual overtraining. Also the option NNodesMax=3 is quite drastic, leaving
the training with extremely short trees. Further studies will have to probe, if the
training after applying the cut has in fact a worse performance than applying the
cut after the training.

4 Conclusions

For the training of the discrimination between Z — 77 — ee and Z — ee it could be
concluded that the training without precut on DiLeptonMass performs better than
with precut. For the TMVA configurations in particular it was found that AdaBoost
and Grad had no significant deviation in performance or overtraining and were in
total very comparable.

The comparison between pruning and adjusting tree parameters like MaxDepth im-
plies that one should use tree parameters to reduce overtraining or rely on chance
using the option UseRandomisedTrees=True, since this greatly enhances perfor-
mance. In every case the options MaxDepth = 3,4 proved to be valuable as they did
not decrease the performance, but reduced overtraining.

Most of the chosen BDT configurations performed equally well or were indistinguish-
able from the gain or loss in performance induced by choosing a different seed for
the randomised selection of test and training events from the entire sample using the
“standard” configuration. It was shown that the options UseRandomisedTrees=True
and UseBaggedGrad=True can significantly enhance the performance of the BDT
training, but require repetitive trainings as the outcome depends on chance.

First test runs with respect to the H — 77 — ee sample showed that the ob-
tained results also apply to the sample and yielded high performance.

A possible optimization would be to use artificial neural networks as they have a
higher theoretical best performance in problems that involve many well discriminat-
ing variables. However the problem at hand involves mainly poorly discriminating
variables, that would have to be removed such that the neural networks perform
well enough [2]. A detailed study would be necessary to test, if the performance
boost of the neural networks overcompensated the loss of performance due to the
cut-down of variables.

Acknowledgements

I would like to thank the DESY organisational team for this summerschool program,
I enjoyed it very much. Further I want to thank my supervisors Alexei Raspereza,
Jakob Salfeld-Nebgen and Agni Bethani for the great time I had working in their
group and helping me whenever I encountered any problems. Their company was
much appreciated and I felt very welcome. I wish we could have spent more time
together as Jakob was not here during most of my stay. Also I would like to thank
Gregor Hellwig, who was helping me with some problems.

Further I wish to thank my friends JoZze Zobec and the other people from the wooden
hostel for all the fun we had and in particular my officemate Khilesh Mistry, who
was a great source of distraction and gossip.

References

[1] S. Chatrchyan et al. [CMS Collaboration|: Phys. Lett. B [arXiv:1207.7235 |[hep-
ex||

[2] A. Hoecker et al.: TMVA 4 Users Guide, 2009 |arXiv:physics/0703039]

19

A Appendix

Correlation Matrix (signal)

Linear correlation coefficients in %

isDiLeptonPlane

SosPosDiLepton

ValidDiTau

DiElePtRatio

EleDCASig

POoSMETDPhi

DiLepEta

-100

Dig, Po, Elgp, Oig Va Co, Co,

2 S Cas,; Tep, "dp; SPospy, P

g ET0py, — ASig Ratiy Ty 50y ont os0j Doy
hane

(a) Input variable correlation matrix for signal.

Correlation Matrix (background)

Linear correlation coefficients in %

isDiLeptonPlane

SosPosDiLepton

ValidDiTau

DiElePtRatio

EleDCASig

POSMETDPhi

DiLepEta

-100

Di g Po, Elep, gy Vayg Co, Co,

04 'S C, lep, lidlp;- 'SP, _ ISP,

Eta ey, ASg ey Ty 50, o 050 Doy
Tan, e

(b) Input variable correlation matrix for back-
ground.

Figure 9: Input variable correlations for the uncut sample.

AdaBooost weight distribution

Boost weights vs tree

B e L R AN £35 T
L 1 T]
[1 2]
[] 30 E
2000_— i] 2 E
L 1 25 7
1500 — 20k E
F] 15 E
1000 - 2 1
L] 10f E
5001 5]
[] sF 3
PP [PR IR TR B | R s i W s s wawn wwn wws s,
0 1 2 3 4 0 200 400 600 800 100012001400160018002000

error fraction vs tree number

w
a

@
=]

egor fragtion
#tree nodes

o
IS

0.3

0.2

P FRTE ETE RE TS PR P FETS FUes R
0 200 400 600 800 100012001400160018002000
#ree

boost weight #tree

Nodes before/after pruning

00 200 400 600 800 100012001400160018002000

#tree

Figure 10: BDT control parameters for the final result of the uncut Z study. The plots
implie that no tree was pruned and AdaBoost reaches an approximate limit of boost weight
1 after a certain number of trees are grown. This is also visible in the error fraction plot.

20

A Appendix

Input variable: DiLepEta

0.339

< 016

z

D 0.14

0.12
0.1

(UN

Ols'fi'sa'gr%af o

/| Background

7
|
1
)
1
4
4

Input variable: DiElePtRatio

(L/N) dN/0.0169

U/0-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

5 1
DiLepEta

o

02 04

Input variable: CosPosDiLeptonPlane

T T T T T T T T T T T T T g

(1/N) dN/0.0169

L B L S L S

U/O-flow (S.B): (0.0, 0.0)%/ (0.0, 0.0)%

0.6 0.8 1
DiElePtRatio

Input variable: PosMETDPhi

(1/N) dN/0.0532

15 2
PosMETDPhi

25 3

Input variable: ValidDiTau

L e e
35 1
30

25

(1/N) dN/0.0169

20

15

10

0 1 1 1 1
0 0.2 0.4 0.6

ValidDiTau

0.8 1

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

Input variable: EleDCASig

(1/N) dN/0.122

METET I B S S BT BT B B
0,0.0)%/ (0.0, 0.0)%

U/o-flow (S,

4 -3 -2 -1 0 1 2 3

EleDCASIg

Input variable: CosPosDiLepton

(1/N) dN/0.0339

%/ (0.0, 0.0)%

* puu
-0.8-0.6-0.4-02 0 0.20.4060.8 1
CosPosDiLepton

Input variable: DiLeptonMass

0.4

<
<
o 0.1F
2 3
g =z oo8f
S =
g =
3 0.06
S
<
0.04
0.02

06 08 1

CosPosDilLeptonPlane

0
20 40 60 80 100120140160180200

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.1)%

DiLeptonMass

Figure 11: Distributions of input variables for signal (blue) and background (red) includ-
ing DiLeptonMass, which is usually used only as a spectator variable. Normalizations are
arbitrarily chosen.

21

7
HE
e
7
2oy
T
7
e
et -
2 e
%
T
L
%

i

[
|5

6E€0°0 /NP

PosMETDPhi

CosPosDiLepton

(b) Randomised Test and Train distributions

of PosMETDPhi for signal events.

(a) Randomised Test and Train distributions

of CosPosDilLepton for signal events.

T U
-08 -06 -04 02 0 02 04 06 08 1

osMETDPhi

CosPosDiLepton

(d) Randomised Test and Train distributions

of PosMETDPhi for background events.

(¢) Randomised Test and Train distributions
of CosPosDilLepton for background events.

Difference of test and train variable distributions after randomization of the

entire sample for the variables CosPosDiLepton and PosMETDPhi for signal and background.

Figure 12:

22 A Appendix

3 70 [E7 Sibnaltest sample)l "~ " | [signal (raining sample] * T 3 100 [T dignal (tést sample) ' T [¢ signal drainingsample) " Y
= ;@ Background (test sample) | | o Background (training sample) > |7} Background (test sample) | | « Background (training sample) |
° E = °

2 60 [-Kolmogorov-Smirnov test: signal (background) probability = 0.979 (1) - '2 80 [Kolmogorov-Smirnov test: signal (background) probability = 3.06e-33 (0.965) ;
2 1 2 1
50 f-- = i]

:] sl g

40 - - i 1S

i EE

a il S

30k 40 B —£

12

20 f- e 18

EE R 1

10 sz 1B

42 12

0 I | | | | 1wl 0 | | | | | | | 12
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 -0.9 -08 -0.7 -06 -05 -04 -03 -02 -0.1
BDT_UseNVars=6 response BDT_UseNVars=7 response

(a) BDT output distribution for booking (b) BDT output distribution for booking
options Grad, UseRandomisedTrees=True, options Grad, UseRandomisedTrees=True,
UseNVars=6 and with SplitSeed=0. The UseNVars=7 and with SplitSeed=0. The
behaviour is very similar for the same booking behaviour is very similar for the same booking

configuration, but with UseNVars=2,.--.5 configuration, but with SplitSeed=100 and
UseNVars=2,---,7
Background rejection versus Signal efficiency Background rejection versus Signal efficiency
1 LI B B B B I L 1 R I o B e e R RS

s °f i s F T i
3 oof - ~, 3 S oof 3
T £ \ B [£ \ 7
< 08F N = 5 08F =
5 = \ E 5 = E
2 07F = 2 o07F N =
o 'F N\ E o 'F E
] E \ E S = E
T 0.6 = T 06 =
(@ £ \ 3 (e £ 3
05F \ = 05F \ 1
04 \\ 1 04 F =
03F \: 03F \ =
0.2 :\ L1 L L L L L L L1 L 11! \: 0.2 :\ L1 L L L L1 L L L L L \:
0O 01 02 03 04 05 06 07 08 09 1 0O 01 02 03 04 05 06 07 08 09 1
Signal efficiency Signal efficiency

(¢) ROC-Curve for booking options Grad, (d) ROC-Curve for booking options Grad,
UseRandomisedTrees=True and with UseRandomisedTrees=True and with
SplitSeed=0. The light blue curve cor- SplitSeed=100 for UseNVars=2,---,7
responds to UseNVars=7 while the others

correspond to values UseNVars=2,- - - 6.

Figure 13: BDT output distribution and ROC-curves for UseRandomisedTrees=True
indicating the strong sensitivity that comes along with this option.

23

SplitSeed=0 SplitSeed=100
UseNVars | S/v/S+ B | Int ROC | S/v/S + B | IntROC
2 9.00422 0.812 7.21696 0.787
3 9.14339 0.813 7.21696 0.787
4 9.424 0.813 7.17362 0.786
5t 9.57263 0.814 7.15674 0.786
6 9.62671 0.813 7.10917 0.785
7 6.72443 0.779 7.04257 0.785

Table 3: Difference in ROC-curve integral and significance for the booking configurations

of fig. [13]

T ——
is\gr{al‘(te‘st‘sahﬂle)‘ T

3 14 ~ Signall training saniple) |
=

=z [177/] Background (test sample) - Background (training sample)]
° = =
= 12 [_Kolmogorov-Smirnov test: signal (background) probability = 0.561 (0.942) 4
s]
T 10 =

. Iz

- 49

8 — -1

F Ho

F s

6 4z

F 128

L Js

F 19

4 —e

F da

+ 1¢

2 Tz

F 13

i 13

—
0.1

=3_NEM=500_UseNVars=6_ExpectedError_Strength=50 response

(a) BDT output distribution for NTrees=2000,
AdaBoost, UseRandomisedTrees=True,
UseNVars=6, PruneMethod=ExpectedError,
MaxDepth=3, nEventsMin=500, SplitSeed=100
and PruneStrength=50

14 M signal destsample] T ' | | - Sibnal (ralning Sample) ' 1]
H_ /] Background (test sample)

[Kolmogorov-Smirnov test: signal (background) ?robability =5.61e-30 (0.000292)

+_}{'

- Background (training sample) -

12

(1/N) dN/ dx

10

o
TT T T T[T T T[T [TTT]

coa b b b bea i I

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

0»0.4 -.3 = -0.2 -0.1 0 .1
3_NEM=500_UseNVars=6_ExpectedError_Strength=200 response
(b) BDT output distribution for NTrees=2000,
AdaBoost, UseRandomisedTrees=True,
UseNVars=6, PruneMethod=ExpectedError,
MaxDepth=3, nEventsMin=500, SplitSeed=100
and PruneStrength=200

Figure 14: Two BDT output distributions for ExpectedError-pruning.

(a) Distribution of DiLeptonMass before apply-
ing the optimal cut value corresponding to the
final BDT training of the Z — 77 — ee train-
ing.

(b) Distribution of DiLeptonMass after apply-
ing the optimal cut value corresponding to the
final BDT training of the Z — 77 — ee train-
ing.

Figure 15: Distribution of DiLeptonMass before and after applying the BDT cut of the

final training configuration in fig. @

	Introduction
	Theory
	Physics Background
	Decision Trees
	Boosting
	Overtraining and Pruning
	Toolkit For Multivariate Analysis (TMVA)

	Analysis Results
	Analysis for Z ee
	Analysis with cut on DiLeptonMass

	Conclusions
	References
	Appendix

